首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   16篇
  国内免费   2篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   4篇
  2013年   3篇
  2012年   15篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
  1969年   1篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
11.
12.
13.
Theory predicts that males should increase overall investment in ejaculate expenditure with increasing levels of sperm competition. Since ejaculate production is costly, we may expect males to tailor their reproductive investment according to anticipated levels of sperm competition. Here, we investigate plasticity in ejaculate investment in response to cues of population average levels of sperm competition in a promiscuous mammal, the bank vole (Myodes glareolus). We manipulated the social experience of experimental subjects during sexual development via differential exposure to the odour of rival males, to simulate conditions associated with relatively high or low average levels of sperm competition. Males exposed to a high level of competition developed larger major accessory reproductive glands (seminal vesicles) than those that experienced a low level of competition, suggesting that an increased investment in the production of copulatory plugs and/or mating rate may be beneficial at relatively high sperm competition levels. However, investment in sperm production, testis size and sperm motility were not altered according to social experience. Our findings emphasize the importance of non-sperm components of the ejaculate in mammalian postcopulatory sexual selection, and add to the growing evidence linking plasticity in reproductive traits to social cues of sperm competition.  相似文献   
14.
15.
Ramm G  James DE 《Cell metabolism》2005,2(3):150-152
Insulin regulates glucose transport in muscle and fat cells by stimulating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In this issue of Cell Metabolism, Holman and colleagues reconstitute this process in vitro, providing a system that promises new breakthroughs in our understanding of this important metabolic process.  相似文献   
16.
The phosphatidylinositol 3-kinase/Akt pathway regulates many biological processes, including insulin-regulated GLUT4 insertion into the plasma membrane. However, Akt operates well below its capacity to facilitate maximal GLUT4 translocation. Thus, reconciling modest changes in Akt expression or activity as a cause of metabolic dysfunction is complex. To resolve this, we examined insulin regulation of components within the signaling cascade in a quantitative kinetic and dose-response study combined with hierarchical cluster analysis. This revealed a strong relationship between phosphorylation of Akt substrates and GLUT4 translocation but not whole cell Akt phosphorylation. In contrast, Akt activity at the plasma membrane strongly correlated with GLUT4 translocation and Akt substrate phosphorylation. Additionally, two of the phosphorylated sites in the Akt substrate AS160 clustered separately, with Thr(P)-642 grouped with other Akt substrates. Further experiments suggested that atypical protein kinase Cζ phosphorylates AS160 at Ser-588 and that these two sites are mutually exclusive. These data indicate the utility of hierarchical cluster analysis for identifying functionally related biological nodes and highlight the importance of subcellular partitioning of key signaling components for biological specificity.  相似文献   
17.
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim(-/-) cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.  相似文献   
18.
BACKGROUND: Several strategies have been reported for the design and selection of novel DNA-binding proteins. Most of these studies have used Cys(2)His(2) zinc finger proteins as a framework, and have focused on constructs that bind DNA in a manner similar to Zif268, with neighboring fingers connected by a canonical (Krüppel-type) linker. This linker does not seem ideal for larger constructs because only modest improvements in affinity are observed when more than three fingers are connected in this manner. Two strategies have been described that allow the productive assembly of more than three canonically linked fingers on a DNA site: connecting sets of fingers using linkers (covalent), or assembling sets of fingers using dimerization domains (non-covalent). RESULTS: Using a combination of structure-based design and phage display, we have developed a new dimerization system for Cys(2)His(2) zinc fingers that allows the assembly of more than three fingers on a desired target site. Zinc finger constructs employing this new dimerization system have high affinity and good specificity for their target sites both in vitro and in vivo. Constructs that recognize an asymmetric binding site as heterodimers can be obtained through substitutions in the zinc finger and dimerization regions. CONCLUSIONS: Our modular zinc finger dimerization system allows more than three Cys(2)His(2) zinc fingers to be productively assembled on a DNA-binding site. Dimerization may offer certain advantages over covalent linkage for the recognition of large DNA sequences. Our results also illustrate the power of combining structure-based design with phage display in a strategy that assimilates the best features of each method.  相似文献   
19.
A change of the secondary structure of histones isolated from tumor cells was observed. This changed structure showed increased percentage of elongated left helix of poly-l-proline II type. It is concerned with an increased content of bivalent Ca++ and Mg++ ions.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号