首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   38篇
  2023年   3篇
  2022年   8篇
  2021年   14篇
  2020年   7篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   17篇
  2014年   30篇
  2013年   15篇
  2012年   28篇
  2011年   28篇
  2010年   17篇
  2009年   15篇
  2008年   16篇
  2007年   18篇
  2006年   17篇
  2005年   13篇
  2004年   11篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1995年   4篇
  1994年   2篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有377条查询结果,搜索用时 15 毫秒
11.
A new linear binding affinity model has been developed for hydroxyethylene based inhibitors of beta-secretase (BACE). This model is an improvement over a previously published model, and has been applied to a series of analogs not included in the training set. The linear model has been used to study subsite specificity for the P(2) through P(2)' positions, and to evaluate a small number of C-terminal analogs. The predicted rankings are in good agreement with experiment and support using this model for structure-based design of BACE inhibitors.  相似文献   
12.
Victims of snakebite quickly succumb to severe respiratory failure, which can be fatal if left untreated. One of the most toxic components of snake venom is phospholipase A2 (PLA2; EC 3.1.1.4). PLA2 isolated from the elapid, Naja sputatrix, induced pulmonary inflammation and edema when administered intravenously and intratracheally to rats. Analysis of pulmonary gene expression profiles using oligonucleotide microarrays revealed 60 genes whose expression was altered by at least 3-fold in response to intratracheal instillation of PLA2 for 3 h as compared with controls. In addition to genes encoding cytokines and chemokines responsible for inflammatory processes, the Na+/K+-ATPase gene has been found to be involved in edema formation. Real-time PCR, Western blot, and immunohistochemical analyses confirmed that the expression of AQP1 and AQP5 mRNAs and proteins was decreased. Besides providing an experimental model for studies on the pathophysiology of the lung, this investigation yields a clue to the mechanisms by which endogenous PLA2s could mediate inflammation in conditions such as allergy and rheumatoid arthritis.  相似文献   
13.
Despite the fact that mucus and bicarbonate are important macroscopic components of the gastric mucosal barrier, severe acidic and peptic conditions surely exist at the apical membrane of gastric glandular cells, and these membranes must have highly specialized adaptations to oppose external insults. Parietal cells abundantly express the heterodimeric, acid-pumping H-K-ATPase in their apical membranes. Its beta-subunit (HKbeta), a glycoprotein with >70% of its mass and all its oligosaccharides on the extracellular side, may play a protective role. Here, we show that the extracellular domain of HKbeta is highly resistant to trypsin in the native state (much more than that of the structurally related Na-K-ATPase beta-subunit) and requires denaturation to expose tryptic sites. Native HKbeta also resists other proteases, such as chymotrypsin and V8 protease, which hydrolyze at hydrophobic and anionic amino acids, respectively. Removal of terminal alpha-anomeric-linked galactose does not appreciably alter tryptic sensitivity of HKbeta. However, full deglycosylation makes HKbeta much more susceptible to all proteases tested, including pepsin at pH <2.0. We propose that 1) intrinsic folding of HKbeta, 2) bonding forces between subunits, and 3) oligosaccharides on HKbeta provide a luminal protein domain that resists gastric lytic conditions. Protein folding that protects susceptible charged amino acids and is maintained by disulfide bonding and hydrophilic oligosaccharides would provide a stable structure in the face of large pH changes. The H-K-ATPase is an obvious model, but other gastric luminally exposed proteins are likely to possess analogous protective specializations.  相似文献   
14.
The phenomenon of cold scission or cold lability, which entails a widespread variety of oligomeric enzymes, is still enigmatic. The effect of cooling on the activity and the quaternary structure of the pyridoxal 5'-phosphate (PLP)-dependent enzyme, tryptophanase (Tnase), was studied utilizing single photon counting time-resolved spectrofluorometry. Upon cooling of holo-wild-type (wt) Tnase and its W330F mutant from 25 degrees C to 2 degrees C, a reduction in PLP fluorescence lifetime and rotational correlation time as well as inactivation and dissociation from tetramers to dimers were observed for both enzymes. Fluorescence anisotropy invariably decreased as a consequence of cooling, whether it was accompanied by a slight decrease in activity without significant dissociation, or by a substantial decrease in activity that was associated with either a partial or major dissociation. These results support the suggested conformational change that precedes the PLP-aldimine bond scission. It is proposed that cold inactivation is initiated by the weakening of hydrophobic interactions, leading to conformational changes which are the driving force for the aldimine bond cleavage.  相似文献   
15.
16.
Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.  相似文献   
17.
The nucleotide substitution C797T in the Chrm2 gene causes substitution of leucine for proline at position 266 (P266L) of the CHRM2 protein. Because Chrm2 codes for the type 2 muscarinic receptor, this mutation could influence physiologic and behavioral phenotypes of mice. Chrm2 mRNA was not differentially expressed in 2 brain regions with high cholinergic innervation in a mouse strain that does (BALB/cByJ) or does not (C57BL/6J) have the mutation. In addition, strains of mice with and without the C797T point mutation in Chrm2 did not differ significantly in muscarinic binding properties. Variation across strains was detected in terms of acoustic startle, prepulse inhibition, and the physiologic effects of the muscarinic agonist oxotremorine. However, interstrain differences in these measures did not correlate with the presence of the mutation. Although we were unable to associate a measurable phenotype with the Chrm2 mutation, assessment of the mutation on other genetic backgrounds or in the context of other traits might reveal differential effects. Therefore, despite our negative findings, evaluation of characteristics that involve muscarinic function should be undertaken with caution when comparing mice with different alleles of the Chrm2 gene.Abbreviations: M2R, type 2 muscarinic receptor; NMS, N-methylscopolamine; OXO, oxotremorine; PPI, prepulse inhibition; RI, recombinant inbredAcetylcholine, a crucial neurotransmitter in both the central and peripheral nervous systems, acts through 2 major types of receptors: muscarinic and nicotinic. Muscarinic acetylcholine receptors are members of the superfamily of G protein-coupled receptors.17mRNA and protein for the type 2 muscarinic receptor (M2) are present in many peripheral and central sites in the nervous system and peripheral target organs. M2R mediates a complex combination of postsynaptic and presynaptic events in noncholinergic and cholinergic neurons, respectively.9The M2R is encoded by the gene Chrm2. The proline at position 266 and surrounding residues of the Chrm2 gene are relatively conserved across several species, including human, rat, mouse, and swine (http://www.ncbi.nlm.nih.gov/). However, a nucleo­tide substitution (C797T) has been identified in several strains of inbred mice (Mouse Genome Informatics SNP query for Chrm2; http://www.informatics.jax.org/searches). This nucleotide substitution results in an amino acid substitution, P266L, in the protein. Proline is the only amino acid that contains a secondary amino group and forms tertiary peptide bonds. Because of this attribute, substitution of leucine for proline could cause alloste­ric alterations in proteins, with potential structural or functional consequences.Allosteric modulation is a recognized regulatory mechanism of muscarinic receptors.17,21 For example, introduction of a point mutation (Asn to Tyr) at position 410 (the junction of transmembrane domain 6 and the 3rd intracellular loop) of the human M2R generated a constitutively active receptor with altered receptor–G-protein coupling in response to agonist administration.23 Single-nucleotide polymorphisms in the human Chrm2 gene are implicated in responses to visual stimuli requiring attention, working memory, and response selection.8,15,16 In addition, a common Chrm2 polymorphism has been associated with major depression in women in some studies6,35 but not others.5 Furthermore, Chrm2 has been implicated in nicotine addiction; Chrm2 single-nucleotide polymorphisms may be associated with the general possibility of becoming addicted, personality traits that predispose the person to becoming addicted, or altered regulation of cholinergic systems that affect the smoker''s response to nicotine and its addictive properties.22These reports suggest that mouse strains that bear the Chrm2 mutation, as compared with strains that do not, potentially provide a unique model for exploring mechanisms by which Chrm2 variants may affect cholinergic mechanisms and associated physiologic processes in both brain and the periphery. We report here on studies conducted to determine whether the C797T Chrm2 mutation confers a detectable phenotypic difference in M2R-related processes in mice.  相似文献   
18.
Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.  相似文献   
19.
20.
Ca2+/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca2+. The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号