全文获取类型
收费全文 | 360篇 |
免费 | 24篇 |
专业分类
384篇 |
出版年
2023年 | 1篇 |
2022年 | 6篇 |
2021年 | 15篇 |
2020年 | 5篇 |
2019年 | 18篇 |
2018年 | 20篇 |
2017年 | 15篇 |
2016年 | 13篇 |
2015年 | 10篇 |
2014年 | 21篇 |
2013年 | 26篇 |
2012年 | 25篇 |
2011年 | 36篇 |
2010年 | 20篇 |
2009年 | 15篇 |
2008年 | 16篇 |
2007年 | 29篇 |
2006年 | 22篇 |
2005年 | 14篇 |
2004年 | 13篇 |
2003年 | 15篇 |
2002年 | 12篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有384条查询结果,搜索用时 12 毫秒
101.
Vasudevan A Conner SE Gentles RG Faghih R Liu H Dwight W Ireland L Kang CH Esbenshade TA Bennani YL Hancock AA 《Bioorganic & medicinal chemistry letters》2002,12(21):3055-3058
The synthesis and biological evaluation of novel antagonists of the rat H(3) receptor are described. These compounds differ from prototypical H(3) antagonists in that they do not contain an imidazole moiety, but rather a substituted aminopyrrolidine moiety. A systematic modification of the substituents on the aminopyrrolidine ring was performed using pre-formatted precursor sets, where applicable, to afford several compounds with high affinity and selectivity for the H(3) receptor. 相似文献
102.
103.
104.
105.
Ghasem Barati Samad Nadri Ramin Hajian Ali Rahmani Hossein Mostafavi Yousef Mortazavi Amir Hossein Taromchi 《Journal of cellular physiology》2019,234(5):6801-6809
Tissue and stem cell encapsulation andtransplantation were considered as promising tools in the treatment of patients with diabetes mellitus. The aim of this study was to evaluate the effect of microfluidic encapsulation on the differentiation of trabecular meshwork mesenchymal stem cells (TM-MSC), into insulin-producing cells (IPCs) both in vitro and in vivo. The presence of differentiated cells in microfibers (three dimensional [3D]) and tissue culture plates (TCPS; two dimensional [2D]) culture was evaluated by detecting mRNA and protein expression of pancreatic islet-specific markers as well as measuring insulin release of cells in response to glucose challenges. Finally, semi-differentiated cells in microfibers (3D) and 2D cultures were used to control the glucose level in diabetic rats. The results of this study showed that MSCs differentiated in alginate microfibers (fabricated by microfluidic device) express more Pdx-1 mRNA (1.938-fold, p-value: 0.0425) and Insulin mRNA (2.841-fold, p-value: 0.0001) compared with those cultured on TCPS. Furthermore, cell encapsulation in microfluidic derived microfibers decreased the level of blood glucose in diabetic rats. The approach used in this study showed the possibility of alginate microfibers as a matrix for differentiation of TM-MSCs (as a new source) into IPCs. In addition, it could minimize different steps in stem cell differentiation, handling, and encapsulation, which lead to loss of an unlimited number of cells. 相似文献
106.
Kumar JS Prabhakaran J Arango V Parsey RV Underwood MD Simpson NR Kassir SA Majo VJ Van Heertum RL Mann JJ 《Bioorganic & medicinal chemistry letters》2004,14(10):2393-2396
Synthesis and in vitro evaluation of [O-methyl-(11)C]1-(2-chlorophenyl)-5-(4-methoxyphenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide ([(11)C]-1), a potential imaging agent for CB(1) receptors using PET is described. 1-(2-Chlorophenyl)-5-(4-hydroxyphenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (5), the precursor for radiolabeling, was synthesized from 4-OTBDPS-propiophenone (2) in five steps with 30% overall yield. The reaction of alcohol 5 with [(11)C]MeOTf at 60 degrees C afforded [(11)C]-1 with an average radiochemical yield of 14.5% (EOS) and >2000 Ci/mmol specific activity. The radiotracer was found to selectively label CB(1) receptors in slide-mounted sections of postmortem human brain containing prefrontal cortex as demonstrated by in vitro autoradiography using phosphor imaging. 相似文献
107.
108.
Parthav Jailwala Jill Waukau Sanja Glisic Srikanta Jana Sarah Ehlenbach Martin Hessner Ramin Alemzadeh Shigemi Matsuyama Purushottam Laud Xujing Wang Soumitra Ghosh 《PloS one》2009,4(8)
Background
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects.Principal Findings
Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu.Conclusions
In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D. 相似文献109.
Gfesser GA Zhang H Dinges J Fox GB Pan JB Esbenshade TA Yao BB Witte D Miller TR Kang CH Krueger KM Bennani YL Hancock AA Faghih R 《Bioorganic & medicinal chemistry letters》2004,14(3):673-676
Further SAR studies on novel histamine H(3) receptor antagonists are presented. Compound 14bb is a potent antagonist of both the rat cortical and human clone receptors, and is demonstrated to act functionally as an antagonist in an in vivo mouse dipsogenia model. 相似文献
110.
Alireza Abdanipour Taki Tiraihi Ali Noori-Zadeh Arezo Majdi Ramin Gosaili 《Molecular neurobiology》2014,49(3):1364-1372
Reactive oxygen species and oxidative stress are associated with various cell processes, including cell survival and apoptosis. Oxidative stress has been implicated in the pathogenesis of several neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). In the present study, we evaluated the effects of lovastatin chemoprotection against hydrogen peroxide-induced oxidative stress in bone marrow stromal cell-derived neural stem cells (BMSC-derived NSCs) and whether it has protective effects. BMSC-derived NSCs were pretreated with different doses of lovastatin for 48 h and then exposed to 125 μM H2O2 for 30 min. Using MTT, TUNEL assay, and real-time RT-PCR, we evaluated the effects of lovastatin on cell survival, apoptosis, and PGC-1α and Nrf2 expression rates in pretreated BMSC-derived NSCs compared to control groups. Results showed that apoptosis rate in the lovastatin-pretreated BMSC-derived NSCs was significantly decreased compared to the control group. Our findings suggest that lovastatin protects NSCs against oxidative stress-induced cell death, and therefore, it may be used to promote the survival rate of NSCs and can be a candidate for treatment of oxidative stress-mediated neurological diseases. 相似文献