首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   24篇
  384篇
  2023年   1篇
  2022年   6篇
  2021年   15篇
  2020年   5篇
  2019年   18篇
  2018年   20篇
  2017年   15篇
  2016年   13篇
  2015年   10篇
  2014年   21篇
  2013年   26篇
  2012年   25篇
  2011年   36篇
  2010年   20篇
  2009年   15篇
  2008年   16篇
  2007年   29篇
  2006年   22篇
  2005年   14篇
  2004年   13篇
  2003年   15篇
  2002年   12篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有384条查询结果,搜索用时 12 毫秒
101.
The synthesis and biological evaluation of novel antagonists of the rat H(3) receptor are described. These compounds differ from prototypical H(3) antagonists in that they do not contain an imidazole moiety, but rather a substituted aminopyrrolidine moiety. A systematic modification of the substituents on the aminopyrrolidine ring was performed using pre-formatted precursor sets, where applicable, to afford several compounds with high affinity and selectivity for the H(3) receptor.  相似文献   
102.
103.
104.
105.
Tissue and stem cell encapsulation andtransplantation were considered as promising tools in the treatment of patients with diabetes mellitus. The aim of this study was to evaluate the effect of microfluidic encapsulation on the differentiation of trabecular meshwork mesenchymal stem cells (TM-MSC), into insulin-producing cells (IPCs) both in vitro and in vivo. The presence of differentiated cells in microfibers (three dimensional [3D]) and tissue culture plates (TCPS; two dimensional [2D]) culture was evaluated by detecting mRNA and protein expression of pancreatic islet-specific markers as well as measuring insulin release of cells in response to glucose challenges. Finally, semi-differentiated cells in microfibers (3D) and 2D cultures were used to control the glucose level in diabetic rats. The results of this study showed that MSCs differentiated in alginate microfibers (fabricated by microfluidic device) express more Pdx-1 mRNA (1.938-fold, p-value: 0.0425) and Insulin mRNA (2.841-fold, p-value: 0.0001) compared with those cultured on TCPS. Furthermore, cell encapsulation in microfluidic derived microfibers decreased the level of blood glucose in diabetic rats. The approach used in this study showed the possibility of alginate microfibers as a matrix for differentiation of TM-MSCs (as a new source) into IPCs. In addition, it could minimize different steps in stem cell differentiation, handling, and encapsulation, which lead to loss of an unlimited number of cells.  相似文献   
106.
Synthesis and in vitro evaluation of [O-methyl-(11)C]1-(2-chlorophenyl)-5-(4-methoxyphenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide ([(11)C]-1), a potential imaging agent for CB(1) receptors using PET is described. 1-(2-Chlorophenyl)-5-(4-hydroxyphenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (5), the precursor for radiolabeling, was synthesized from 4-OTBDPS-propiophenone (2) in five steps with 30% overall yield. The reaction of alcohol 5 with [(11)C]MeOTf at 60 degrees C afforded [(11)C]-1 with an average radiochemical yield of 14.5% (EOS) and >2000 Ci/mmol specific activity. The radiotracer was found to selectively label CB(1) receptors in slide-mounted sections of postmortem human brain containing prefrontal cortex as demonstrated by in vitro autoradiography using phosphor imaging.  相似文献   
107.
108.

Background

Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects.

Principal Findings

Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu.

Conclusions

In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D.  相似文献   
109.
Further SAR studies on novel histamine H(3) receptor antagonists are presented. Compound 14bb is a potent antagonist of both the rat cortical and human clone receptors, and is demonstrated to act functionally as an antagonist in an in vivo mouse dipsogenia model.  相似文献   
110.
Reactive oxygen species and oxidative stress are associated with various cell processes, including cell survival and apoptosis. Oxidative stress has been implicated in the pathogenesis of several neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). In the present study, we evaluated the effects of lovastatin chemoprotection against hydrogen peroxide-induced oxidative stress in bone marrow stromal cell-derived neural stem cells (BMSC-derived NSCs) and whether it has protective effects. BMSC-derived NSCs were pretreated with different doses of lovastatin for 48 h and then exposed to 125 μM H2O2 for 30 min. Using MTT, TUNEL assay, and real-time RT-PCR, we evaluated the effects of lovastatin on cell survival, apoptosis, and PGC-1α and Nrf2 expression rates in pretreated BMSC-derived NSCs compared to control groups. Results showed that apoptosis rate in the lovastatin-pretreated BMSC-derived NSCs was significantly decreased compared to the control group. Our findings suggest that lovastatin protects NSCs against oxidative stress-induced cell death, and therefore, it may be used to promote the survival rate of NSCs and can be a candidate for treatment of oxidative stress-mediated neurological diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号