首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   24篇
  2023年   3篇
  2022年   6篇
  2021年   16篇
  2020年   7篇
  2019年   19篇
  2018年   21篇
  2017年   15篇
  2016年   15篇
  2015年   10篇
  2014年   21篇
  2013年   26篇
  2012年   27篇
  2011年   36篇
  2010年   21篇
  2009年   15篇
  2008年   16篇
  2007年   29篇
  2006年   22篇
  2005年   15篇
  2004年   13篇
  2003年   15篇
  2002年   12篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有400条查询结果,搜索用时 8 毫秒
91.

Background

Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects.

Principal Findings

Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu.

Conclusions

In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D.  相似文献   
92.
High commercial value compounds can be obtained through the microbial biotransformation of monoterpenes. Some of these monoterpenic substances are not expensive and produced in a variety of plant species. Biotransformation of some monoterpene hydrocarbons such as α-pinene, β-pinene, myrcene and p-cymene by 7 strain bacteria and 2 strain fungi was investigated. It was observed that some of microorganisms transformed monoterpenes to oxygenated monoterpenes in a good yield which among themStaphylococcus epidermidis showed higher yields.  相似文献   
93.

Background

Leukocyte telomere length, an emerging marker of biological age, has been shown to predict cardiovascular morbidity and mortality. However, the natural history of telomere length in patients with coronary artery disease has not been studied. We sought to investigate the longitudinal trajectory of telomere length, and to identify the independent predictors of telomere shortening, in persons with coronary artery disease.

Methodology/Principal Findings

In a prospective cohort study of 608 individuals with stable coronary artery disease, we measured leukocyte telomere length at baseline, and again after five years of follow-up. We used multivariable linear and logistic regression models to identify the independent predictors of leukocyte telomere trajectory. Baseline and follow-up telomere lengths were normally distributed. Mean telomere length decreased by 42 base pairs per year (p<0.001). Three distinct telomere trajectories were observed: shortening in 45%, maintenance in 32%, and lengthening in 23% of participants. The most powerful predictor of telomere shortening was baseline telomere length (OR per SD increase = 7.6; 95% CI 5.5, 10.6). Other independent predictors of telomere shortening were age (OR per 10 years = 1.6; 95% CI 1.3, 2.1), male sex (OR = 2.4; 95% CI 1.3, 4.7), and waist-to-hip ratio (OR per 0.1 increase = 1.4; 95% CI 1.0, 2.0).

Conclusions/Significance

Leukocyte telomere length may increase as well as decrease in persons with coronary artery disease. Telomere length trajectory is powerfully influenced by baseline telomere length, possibly suggesting negative feedback regulation. Age, male sex, and abdominal obesity independently predict telomere shortening. The mechanisms and reversibility of telomeric aging in cardiovascular disease deserve further study.  相似文献   
94.
Histone methylation is involved in the regulation of many cellular processes. In the past 2 years, several histone demethylases including BHC110/LSD1 have been characterized. BHC110, the first known histone lysine demethylase, removes methyl groups from methylated histone H3 lysine 4 and has been found in many multi-protein complexes. Using one-step affinity purification, we have isolated enzymatically active BHC110-containing complexes. Here, we detail the methods used for the isolation and characterization of these histone demethylase complexes from a human stable cell line.  相似文献   
95.
We describe a boy with chronic abdominal pain, nausea and vomiting, and weight loss. The imaging was compatible with Takayasu's arteritis. Chronic mesenteric ischemia was the etiology of the patient's symptoms.  相似文献   
96.
97.
98.
Adenosine deaminases acting on RNA (ADAR) convert adenosine residues into inosines in double-stranded RNA. Three vertebrate ADAR gene family members, ADAR1, ADAR2, and ADAR3, have been identified. The catalytic domain of all three ADAR gene family members is very similar to that of Escherichia coli cytidine deaminase and APOBEC-1. Homodimerization is essential for the enzyme activity of those cytidine deaminases. In this study, we investigated the formation of complexes between differentially epitope-tagged ADAR monomers by sequential affinity chromatography and size exclusion column chromatography. Both ADAR1 and ADAR2 form a stable enzymatically active homodimer complex, whereas ADAR3 remains as a monomeric, enzymatically inactive form. No heterodimer complex formation among different ADAR gene family members was detected. Analysis of HeLa and mouse brain nuclear extracts suggested that endogenous ADAR1 and ADAR2 both form a homodimer complex. Interestingly, endogenous ADAR3 also appears to form a homodimer complex, indicating the presence of a brain-specific mechanism for ADAR3 dimerization. Homodimer formation may be necessary for ADAR to act as active deaminases. Analysis of dimer complexes consisting of one wild-type and one mutant monomer suggests functional interactions between the two subunits during site-selective RNA editing.  相似文献   
99.
Guyuron B  Behmand RA 《Plastic and reconstructive surgery》2003,112(4):1130-45; discussion 1146-9
The achievement of consistently superior results in rhinoplasty is rendered difficult in part by a number of complex interplays between the anatomical structures of the nose and the techniques used for their alteration, such as tip sutures. The effects of sutures depend largely on the magnitude of suture tightening, the intrinsic forces on the cartilages, cartilage thickness, and the degree of soft-tissue undermining. The tip complex is perhaps the most intricate of the nasal structures, exhibiting subtle but evident responses to manipulations of the lower lateral cartilages. The three-dimensional effects of nine suture techniques that are frequently used in nasal tip surgical procedures are discussed and illustrated. (1) The medial crura suture approximates the medial crura and strengthens the support of the tip. The suture also has effects that are less conspicuous immediately. There is slight narrowing of the columella, caudal protrusion of the lobule, and minimal caudal rotation of the lateral crura. (2) The middle crura suture approximates the most anterior portion of the medial crura. There is greater strengthening of the tip and some approximation of the domes with this suture. (3) The interdomal suture approximates the domes and can equalize asymmetric domes. However, the entire tip may shift to the short side if there is a significant difference in the heights of the domes because of short lateral and medial crura. (4) Transdomal sutures narrow the domal arch while pulling the lateral crura medially. The net results are increased tip projection, alar rim concavity, and the potential need for an alar rim graft. In addition, depending on suture position, cephalic or caudal rotation of the lateral crura may be observed. (5) The lateral crura suture increases the concavity of the lateral crura, reduces the interdomal distance, and may retract the alar rims. Perhaps the most significant inadvertent results of this suture are caudal rotation of the tip and elongation of the nose. This is important because patients who undergo rhinoplasty would often benefit from cephalic, rather than caudal, rotation of the tip. (6) The medial crura-septal suture not only increases tip projection but also rotates the tip cephalically and retracts the columella. (7) The tip rotation suture shifts the tip cephalad while retracting the columella. (8) The medial crura footplate suture approximates the footplates, narrows the columella base, and improves undesirable nostril shape. (9) The lateral crura convexity control suture alters the degree of convexity of the lateral crura. The nuances of these sutures and their multiplanar effects on the nasal tip are discussed.  相似文献   
100.
A series of N-(2-aminoethyl)-alpha-amino acid thymine peptide nucleic acid (PNA) monomers bearing glycosylated side chains in the alpha-amino acid position have been synthesized. These include PNA monomers where glycine has been replaced by serine and threonine (O-glycosylated), derivatives of lysine and nor-alanine (C-glycosylated), and amide derivatives of aspartic acid (N-glycosylated). The Boc and Fmoc derivatives of these monomers were used for incorporation in PNA oligomers. Twelve PNA decamers containing the glycosylated units in one, two, or three positions were prepared, and the thermal stability (T(m)) of their complexes with a complementary RNA was determined. Incorporation of the glycosyl monomers reduced the duplex stability by 0-6 degrees C per substitution. A cysteine was attached to the amino terminus of eight of the PNA decamers (Cys-CTCATACTCT-NH(2)) for easy conjugation to a [(18)F]radiolabeled N-(4-fluorobenzyl)-2-bromoacetamide. The in vivo biodistribution of these PNA oligomers was determined in rat 2 h after intravenous administration. Most of the radioactivity was recovered in the kidneys and in the urine. However, N-acetylgalactosamine (and to a lesser extent galactose and mannose)-modified PNAs were effectively targeting the liver (40-fold over unmodified PNA). Thus, the pharmacodistribution in rats of PNA oligomers can be profoundly changed by glycosylation. These results could be of great significance for PNA drug development, as they should allow modulation and fine-tuning of the pharmacokinetic profile of a drug lead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号