首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   25篇
  2023年   4篇
  2022年   4篇
  2021年   17篇
  2020年   5篇
  2019年   11篇
  2018年   8篇
  2017年   7篇
  2016年   20篇
  2015年   18篇
  2014年   20篇
  2013年   32篇
  2012年   50篇
  2011年   36篇
  2010年   25篇
  2009年   21篇
  2008年   39篇
  2007年   31篇
  2006年   23篇
  2005年   28篇
  2004年   20篇
  2003年   30篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1969年   1篇
排序方式: 共有515条查询结果,搜索用时 93 毫秒
471.
Improper compartmentalization of the inflammatory response leads to systemic inflammation in sepsis. Hemoadsorption (HA) is an emerging approach to modulate sepsis-induced inflammation. We sought to define the effects of HA on inflammatory compartmentalization in Escherichia coli–induced fibrin peritonitis in rats. Hypothesis: HA both reprograms and recompartmentalizes inflammation in sepsis. Sprague Dawley male rats were subjected to E. coli peritonitis and, after 24 h, were randomized to HA or sham treatment (sepsis alone). Venous blood samples collected at 0, 1, 3 and 6 h (that is, 24–30 h of total experimental sepsis), and peritoneal samples collected at 0 and 6 h, were assayed for 14 cytokines along with NO2−/NO3. Bacterial counts were assessed in the peritoneal fluid at 0 and 6 h. Plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, CXCL-1, and CCL2 were significantly reduced in HA versus sham. Principal component analysis (PCA) suggested that inflammation in sham was driven by IL-6 and TNF-α, whereas HA-associated inflammation was driven primarily by TNF-α, CXCL-1, IL-10 and CCL2. Whereas –peritoneal bacterial counts, plasma aspartate transaminase levels and peritoneal IL-5, IL-6, IL-18, interferon (IFN)-γ and NO2/NO3 were significantly lower, both CXCL-1 and CCL2 as well as the peritoneal-to-plasma ratios of TNF-α, CXCL-1 and CCL2 were significantly higher in HA versus sham, suggesting that HA-induced inflammatory recompartmentalization leads to the different inflammatory drivers discerned in part by PCA. In conclusion, this study demonstrates the utility of combined in vivo/in silico methods and suggests that HA exerts differential effects on mediator gradients between local and systemic compartments that ultimately benefit the host.  相似文献   
472.
Functional studies of the methuselah/methuselah-like (mth/mthl) gene family have focused on the founding member mth, but little is known regarding the developmental functions of this receptor or any of its paralogs. We undertook a comprehensive analysis of developmental expression and sequence divergence in the mth/mthl gene family. Using in situ hybridization techniques, we detect expression of six genes (mthl1, 5, 9, 11, 13, and 14) in the embryo during gastrulation and development of the gut, heart, and lymph glands. Four receptors (mthl3, 4, 6, and 8) are expressed in the larval central nervous system, imaginal discs, or both, and two receptors (mthl10 and mth) are expressed in both embryos and larvae. Phylogenetic analysis of all mth/mthl genes in five Drosophila species, mosquito and flour beetle structured the mth/mthl family into several subclades. mthl1, 5, and 14 are present in most species, each forming a separate clade. A newly identified Drosophila mthl gene (CG31720; herein mthl15) formed another ancient clade. The remaining Drosophila receptors, including mth, are members of a large "superclade" that diversified relatively recently during dipteran evolution, in many cases within the melanogaster subgroup. Comparing the expression patterns of the mth/mthl "superclade" paralogs to the embryonic expression of the singleton ortholog in Tribolium suggests both subfunctionalization and acquisition of novel functionalities. Taken together, our findings shed novel light on mth as a young member of an adaptively evolving developmental gene family.  相似文献   
473.
A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutum×G. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous AT and DT chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per AT/DT chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton.  相似文献   
474.
475.
Primary adult Ewing's sarcoma is a rare entity. They most commonly occur in children and young adults. 6% of them are localized extraosseously. We present a case of a 51 year old patient with primary renal Ewing's sarcoma and multiple metastases in liver and iliac bone. Patients with metastatic disease are usually treated with aggressive chemotherapy and have a poor outcome. Our patient underwent complete surgical excision of tumour, and was treated with aggressive chemotherapy, respectively. Two and half years after presentation he is well, without any symptoms.  相似文献   
476.
Polyubiquitination is an essential posttranslational modification that plays critical roles in cellular signaling. PolyUb (polyubiquitin) chains are formed by linking the carboxyl-terminus of one Ub (ubiquitin) subunit to either a lysine residue or the amino-terminus of an adjacent Ub. Linkage through the amino-terminus results in linear polyubiquitination that has recently been demonstrated to be a key step in nuclear factor κB activation; however, tools to study linear chains have been lacking. We therefore engineered a linear-linkage-specific antibody that is functional in Western blot, immunoprecipitation, and immunofluorescence applications. A crystal structure of the linear-linkage-specific antibody Fab fragment in complex with linear diubiquitin provides molecular insight into the nature of linear chain specificity. We use the antibody to demonstrate that linear polyUb is up-regulated upon tumor necrosis factor α stimulation of cells, consistent with a critical role in nuclear factor κB signaling. This antibody provides an essential tool for further investigation of the function of linear chains.  相似文献   
477.
Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.  相似文献   
478.
An interesting mutation affecting the Apo-B gene, R3500Q, is known to display variable geographical distribution in the world and is mostly implicated in the pathogenesis of Familial Hypercholesterolemia (FH). The aim of this study is to determine the prevalence of this mutation in the Lebanese population and compare it to the available international literature. DNA from 160 unrelated healthy donors from our HLA-bank was used and the ApoB genotype was determined using the CardioVascular Disease (CVD) StripAssay (this assay is based on a Polymerase Chain Reaction-Reverse Hybridization technique). The R3500Q mutation was not observed in the general Lebanese population. Since the mutation frequency is elevated in Central Europe and tends to decrease as one moves east and south, it disappears completely in the Mediterranean regions such as Spain, Turkey and Israel; therefore, it is rather expected to be absent in Lebanon as well. Our report adds a valuable piece of information regarding this mutation in an Arab country and paves the way for future research involving patients diagnosed with FH in order to assess the role of the R3500Q mutation in the development of this clinical entity.  相似文献   
479.
Biochemical Genetics - Several reports examined the association of the GSTP1 p.Ile105Val (rs1695, c.313A?>?G) variant with the elevated risk of multiple cancerous diseases...  相似文献   
480.
Many eukaryotic cell-surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). There are at least 26 genes involved in biosynthesis and remodeling of GPI anchors. Hypomorphic coding mutations in seven of these genes have been reported to cause decreased expression of GPI anchored proteins (GPI-APs) on the cell surface and to cause autosomal-recessive forms of intellectual disability (ARID). We performed homozygosity mapping and exome sequencing in a family with encephalopathy and non-specific ARID and identified a homozygous 3 bp deletion (p.Leu197del) in the GPI remodeling gene PGAP1. PGAP1 was not described in association with a human phenotype before. PGAP1 is a deacylase that removes an acyl-chain from the inositol of GPI anchors in the endoplasmic reticulum immediately after attachment of GPI to proteins. In silico prediction and molecular modeling strongly suggested a pathogenic effect of the identified deletion. The expression levels of GPI-APs on B lymphoblastoid cells derived from an affected person were normal. However, when those cells were incubated with phosphatidylinositol-specific phospholipase C (PI-PLC), GPI-APs were cleaved and released from B lymphoblastoid cells from healthy individuals whereas GPI-APs on the cells from the affected person were totally resistant. Transfection with wild type PGAP1 cDNA restored the PI-PLC sensitivity. These results indicate that GPI-APs were expressed with abnormal GPI structure due to a null mutation in the remodeling gene PGAP1. Our results add PGAP1 to the growing list of GPI abnormalities and indicate that not only the cell surface expression levels of GPI-APs but also the fine structure of GPI-anchors is important for the normal neurological development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号