首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   25篇
  2023年   4篇
  2022年   4篇
  2021年   17篇
  2020年   5篇
  2019年   11篇
  2018年   8篇
  2017年   7篇
  2016年   20篇
  2015年   18篇
  2014年   20篇
  2013年   32篇
  2012年   50篇
  2011年   36篇
  2010年   25篇
  2009年   21篇
  2008年   39篇
  2007年   31篇
  2006年   23篇
  2005年   28篇
  2004年   20篇
  2003年   30篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1969年   1篇
排序方式: 共有515条查询结果,搜索用时 15 毫秒
401.
Mechano-regulation during tendon healing, i.e. the relationship between mechanical stimuli and cellular response, has received more attention recently. However, the basic mechanobiological mechanisms governing tendon healing after a rupture are still not well-understood. Literature has reported spatial and temporal variations in the healing of ruptured tendon tissue. In this study, we explored a computational modeling approach to describe tendon healing. In particular, a novel 3D mechano-regulatory framework was developed to investigate spatio-temporal evolution of collagen content and orientation, and temporal evolution of tendon stiffness during early tendon healing. Based on an extensive literature search, two possible relationships were proposed to connect levels of mechanical stimuli to collagen production. Since literature remains unclear on strain-dependent collagen production at high levels of strain, the two investigated production laws explored the presence or absence of collagen production upon non-physiologically high levels of strain (>15%). Implementation in a finite element framework, pointed to large spatial variations in strain magnitudes within the callus tissue, which resulted in predictions of distinct spatial distributions of collagen over time. The simulations showed that the magnitude of strain was highest in the tendon core along the central axis, and decreased towards the outer periphery. Consequently, decreased levels of collagen production for high levels of tensile strain were shown to accurately predict the experimentally observed delayed collagen production in the tendon core. In addition, our healing framework predicted evolution of collagen orientation towards alignment with the tendon axis and the overall predicted tendon stiffness agreed well with experimental data. In this study, we explored the capability of a numerical model to describe spatial and temporal variations in tendon healing and we identified that understanding mechano-regulated collagen production can play a key role in explaining heterogeneities observed during tendon healing.  相似文献   
402.
Biomechanics and Modeling in Mechanobiology - Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit...  相似文献   
403.
Chondrocytes rapidly lose their phenotypic expression of collagen II and aggrecan when grown on 2D substrates. It has generally been observed that a fibroblastic morphology with strong actin–myosin contractility inhibits chondrogenesis, whereas chondrogenesis may be promoted by depolymerization of the stress fibers and/or disruption of the physical link between the actin stress fibers and the ECM, as is the case in 3D hydrogels. Here we studied the relationship between the actin–myosin cytoskeleton and expression of chondrogenic markers by culturing fibroblastic chondrocytes in the presence of cytochalasin D and staurosporine. Both drugs induced collagen II re-expression; however, renewed glycosaminoglycan synthesis could only be observed upon treatment with staurosporine. The chondrogenic effect of staurosporine was augmented when blebbistatin, an inhibitor of myosin/actin contractility, was added to the staurosporine-stimulated cultures. Furthermore, in 3D alginate cultures, the amount of staurosporine required to induce chondrogenesis was much lower compared to 2D cultures (0.625 nM vs. 2.5 nM). Using a selection of specific signaling pathway inhibitors, it was found that PI3K-, PKC- and p38-MAPK pathways positively regulated chondrogenesis while the ERK-pathway was found to be a negative regulator in staurosporine-induced re-differentiation, whereas down-regulation of ILK by siRNA indicated that ILK is not determining for chondrocyte re-differentiation. Furthermore, staurosporine analog midostaurin displayed only a limited chondrogenic effect, suggesting that activation/deactivation of a specific set of key signaling molecules can control the expression of the chondrogenic phenotype. This study demonstrates the critical importance of mechanobiological factors in chondrogenesis suggesting that the architecture of the actin cytoskeleton and its contractility control key signaling molecules that determine whether the chondrocyte phenotype will be directed along a fibroblastic or chondrogenic path.  相似文献   
404.
405.
A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from d-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR (1H, 13C and 11B), IR, elemental and mass spectral study.  相似文献   
406.
Molecular Biology Reports - Lung adenocarcinoma patients have variable prognosis due to many factors. Detection of epidermal growth factor receptor (EGFR) activating mutations is one of the factors...  相似文献   
407.
The regulation of cerebral blood flow (CBF) is a complex integrated process that is critical for supporting healthy brain function. Studies have demonstrated a high incidence of alterations in CBF in patients suffering from migraine with and without aura during different phases of attacks. However, the CBF data collected interictally has failed to show any distinguishing features or clues as to the underlying pathophysiology of the disease. In this study we used the magnetic resonance imaging (MRI) technique—arterial spin labeling (ASL)—to non-invasively and quantitatively measure regional CBF (rCBF) in a case-controlled study of interictal migraine. We examined both the regional and global CBF differences between the groups, and found a significant increase in rCBF in the primary somatosensory cortex (S1) of migraine patients. The CBF values in S1 were positively correlated with the headache attack frequency, but were unrelated to the duration of illness or age of the patients. Additionally, 82% of patients reported skin hypersensitivity (cutaneous allodynia) during migraine, suggesting atypical processing of somatosensory stimuli. Our results demonstrate the presence of a disease-specific functional deficit in a known region of the trigemino-cortical pathway, which may be driven by adaptive or maladaptive functional plasticity. These findings may in part explain the altered sensory experiences reported between migraine attacks.  相似文献   
408.
PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III), that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain''s primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT) and Shannon entropy denoted by wavelet entropy (WE) feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%), which outperformed our occurrence rearrangements based method. The recognition rate was (81.41%) with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification.  相似文献   
409.
Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.  相似文献   
410.
Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号