首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1242篇
  免费   88篇
  国内免费   2篇
  1332篇
  2023年   12篇
  2022年   16篇
  2021年   46篇
  2020年   30篇
  2019年   28篇
  2018年   32篇
  2017年   41篇
  2016年   52篇
  2015年   59篇
  2014年   69篇
  2013年   107篇
  2012年   93篇
  2011年   88篇
  2010年   62篇
  2009年   40篇
  2008年   62篇
  2007年   42篇
  2006年   56篇
  2005年   56篇
  2004年   40篇
  2003年   32篇
  2002年   24篇
  2001年   21篇
  2000年   13篇
  1999年   16篇
  1998年   11篇
  1997年   6篇
  1995年   7篇
  1992年   7篇
  1991年   5篇
  1990年   10篇
  1989年   10篇
  1988年   8篇
  1987年   5篇
  1986年   8篇
  1985年   9篇
  1984年   6篇
  1983年   10篇
  1982年   6篇
  1981年   8篇
  1980年   12篇
  1979年   11篇
  1977年   4篇
  1976年   4篇
  1974年   4篇
  1973年   5篇
  1971年   6篇
  1970年   3篇
  1969年   6篇
  1966年   4篇
排序方式: 共有1332条查询结果,搜索用时 0 毫秒
101.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration, paralysis, and death. Mutant Cu,Zn-superoxide dismutase (SOD1) causes a subset of ALS by an unidentified toxic property. Increasing evidence suggests that chaperone dysfunction plays a role in motor neuron degeneration in ALS. To investigate the relationship between mutant SOD1 expression and chaperone dysfunction, we measured chaperone function in central nervous system tissue lysates from normal mice and transgenic mice expressing human SOD1 variants. We observed a significant decrease in chaperone activity in tissues from mice expressing ALS-linked mutant SOD1 but not control mice expressing human wild type SOD1. This decrease was detected only in the spinal cord, became apparent by 60 days of age (before the onset of muscle weakness and significant motor neuron loss), and persisted throughout the late stages. In addition, this impairment of chaperone activity occurred only in cytosolic but not in mitochondrial and nuclear fractions. Furthermore, multiple recombinant human SOD1 mutants with differing biochemical and biophysical properties inhibited chaperone function in a cell-free extract of normal mouse spinal cords. Thus, mutant SOD1 proteins may impair chaperone function independent of gene expression in vivo, and this inhibition may be a shared property of ALS-linked mutant SOD1 proteins.  相似文献   
102.
Diversity of the native diazotrophs associated with the rhizosphere of pearl millet (P. glaucumn), grown in nutritionally poor soils of semi-arid regions was studied with a view to isolate effective nitrogen fixing and plant growth stimulating bacteria with root associative characteristics. The native population varied from 10(3)-10(4) g(-1) of rhizosphere soil after 40 d growth and belonged to genera Azospirillum, Azotobacter and Klebsiella. Another non-diazotrophic root associative group was Pseudomonas sp., which also produced IAA and enhanced plant growth. Some of these rhizobacteria showed high in vitro acetylene reduction activity along with production of indole acetic acid. Out of 11 selected diazotrophs used as seed inoculants, M10B (Azospirillum sp.), M11E (Azotobacter sp.) and M12D4 (Klebsiella sp.) resulted in significant increase in total root and shoot nitrogen at 45 and 60 days of plant growth under pot culture conditions.  相似文献   
103.
104.
Almost four decades of research in the field of membrane guanylate cyclases is discussed in this review. Primarily, it focuses on the chronological development of the field, recognizes major contributions of the original investigators, corrects certain misplaced facts, and projects its future trend.  相似文献   
105.
106.
We conducted minisatellite-associated sequence amplification (MASA) with an oligo (5' CACCTCTCCACCTGCC 3') based on consensus of 33.15 repeat loci using cDNA from the testis, ovary, spleen, kidney, heart, liver, and lung of water buffalo Bubalus bubalis and uncovered 25 amplicons of six different sizes (1,263, 846/847, 602, 576, 487, and 324 base pairs). These fragments, cloned and sequenced, were found to represent several functional, regulatory, and structural genes. Blast search of all the 25 amplicons showed homologies with 43 transcribing genes across the species. Of these, the 846/847-bp fragment, having homology with the adenylate kinase gene, showed nucleotide changes at six identical places in the ovary and testis. The 1,263; 324; and 487-bp fragments showed homology with the secreted modular calcium binding protein (SMOC-1), leucine-rich repeat neuronal 6A (LRRN6A) mRNA, and human TTTY5 mRNA, respectively. Real-time PCR showed maximum expression of AKL, LRRN6A, and T-cell receptor gamma (TCR-gamma)-like genes in the testis, SMOC-1 in the liver, and the T-cell receptor-like (TCRL) gene in the spleen compared to those used as endogenous control. We construe that these genes have evolved from a common progenitor and conformed to various biological functions during the course of evolution. MASA approach coupled with real-time PCR has potentials to uncover accurate expression of a large number of genes within and across the species circumventing the screening of cDNA library.  相似文献   
107.
108.
The mechanisms by which mutant variants of Cu/Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis are not clearly understood. Evidence to date suggests that altered conformations of amyotrophic lateral sclerosis mutant SOD1s trigger perturbations of cellular homeostasis that ultimately cause motor neuron degeneration. In this study we correlated the metal contents and disulfide bond status of purified wild-type (WT) and mutant SOD1 proteins to changes in electrophoretic mobility and surface hydrophobicity as detected by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence. As-isolated WT and mutant SOD1s were copper-deficient and exhibited mobilities that correlated with their expected negative charge. However, upon disulfide reduction and demetallation at physiological pH, both WT and mutant SOD1s underwent a conformational change that produced a slower mobility indicative of partial unfolding. Furthermore, although ANS did not bind appreciably to the WT holoenzyme, incubation of metal-deficient WT or mutant SOD1s with ANS increased the ANS fluorescence and shifted its peak toward shorter wavelengths. This increased interaction with ANS was greater for the mutant SOD1s and could be reversed by the addition of metal ions, especially Cu2+, even for SOD1 variants incapable of forming the disulfide bond. Overall, our findings support the notion that misfolding associated with metal deficiency may facilitate aberrant interactions of SOD1 with itself or with other cellular constituents and may thereby contribute to neuronal toxicity.The sequence of events by which more than 100 mutations in the gene encoding Cu/Zn-superoxide dismutase (SOD1)3 cause familial forms of amyotrophic lateral sclerosis (ALS) is unknown. Studies of purified SOD1 proteins and cellular or rodent models of SOD1-linked ALS suggest that impaired metal ion binding or misfolding of mutant SOD1 proteins in the cellular environment may be related to their toxicity (110). Available evidence suggests that partially unfolded mutant SOD1 species could contribute to motor neuron death by promoting abnormal interactions that produce cellular dysfunction (1116).In previous studies we characterized physicochemical properties of 14 different biologically metallated ALS SOD1 mutants (17) and demonstrated altered thermal stabilities of these mutants compared with wild-type (WT) SOD1 (18). These “as-isolated” SOD1 proteins, which contain variable amounts of copper and zinc, were broadly grouped into two classes based on their ability to incorporate and retain metal ions with high affinity. WT-like SOD1 mutants retain the ability to bind copper and zinc ions and exhibit dismutase activity similar to the normal enzyme, whereas metal binding region (MBR) mutants are significantly deficient in copper and/or zinc (17, 19). We also observed that ALS-associated SOD1 mutants were more susceptible than the WT enzyme to reduction of the intrasubunit disulfide bond between Cys-57 and Cys-146 (20). The significance of these results is that even WT-like mutants, which exhibit a nearly normal backbone structure (2123), may be vulnerable to destabilizing influences in vivo. Our group and others subsequently showed that the mutant SOD1 proteins share a susceptibility to increased hydrophobicity under conditions that reduce disulfide bonds and/or chelate metal ions (5) and that similar hydrophobic species exist in tissue lysates from mutant SOD1 transgenic mice (46). One consequence of such hydrophobic exposure could be the facilitation of abnormal interactions between the mutant enzymes and other cellular constituents (e.g. chaperones, mitochondrial components, or other targets), which might influence pathways leading to motor neuron death (15, 16, 2427).Accumulating evidence suggests that metal deficiency of SOD1 is an important factor that can influence SOD1 aggregation or neurotoxicity (4, 2833), but the metal-deficient states of SOD1 that are most relevant to ALS remain unclear. Zinc-deficient, copper-replete SOD1 species, which can be produced in vitro by adding copper to SOD1 that has been stripped of its metal ions at acidic pH, were shown to be toxic to motor neurons in culture (28). However, it has not been shown that zinc-deficient, copper-replete SOD1 is produced in vivo as a consequence of ALS mutations, and loading of copper into SOD1 by the copper chaperone for SOD1 (CCS) is not required for toxicity (34, 35). Furthermore, the MBR mutants have a disrupted copper site and have been found to be severely deficient in both zinc and copper (17, 30), yet expression of these SOD1s still produces motor neuron disease (1, 2, 30, 34, 36, 37).When recombinant human SOD1 was overexpressed in insect cells, we instead observed zinc-replete but copper-deficient species for most WT-like mutants, probably because the capacity of the copper-loading mechanism was exceeded (17). These preparations indicate that zinc can be efficiently incorporated into many WT-like mutants in vivo, and much of it is retained after purification. Furthermore, these copper-deficient biologically metallated proteins may be useful reagents to assess the influence of copper binding upon other properties of SOD1 mutants that may be relevant to their neurotoxicity.We previously observed that reduction of the Cys-57—Cys-146 disulfide bond facilitates the ability of metal chelators to alter the electrophoretic mobility and to increase the hydrophobicity of SOD1 mutants (5). This is consistent with the known properties of this linkage to stabilize the dimeric interface, to orient Arg-143 via a hydrogen bond from the carbonyl oxygen of Cys-57 to Arg-143-NH2, and to prevent metal ion loss (3840). However, it remains unclear whether the Cys-57—Cys-146 bond is required to prevent abnormal SOD1 hydrophobic exposure or whether the aberrant conformational change primarily results from metal ion loss. Ablation of the disulfide bond by the experimental (non-ALS) mutants C57S and C146S provides useful reagents to test the relative influence of the disulfide bond and copper binding upon SOD1 properties.In this study we sought to correlate the consequences of copper deficiency, copper and zinc deficiency, and disulfide reduction upon the hydrodynamic behavior and surface hydrophobicity of WT and representative mutant SOD1 enzymes (Fig. 1A). We quantitated the metal contents of as-isolated SOD1 proteins, detected changes in conformation or metal occupancy using native PAGE to assess their electrophoretic mobility, a measure of global conformational change, and correlated these changes to hydrophobic exposure using 1-anilinonaphthalene-8-sulfonic acid (ANS), which is very sensitive to local conformational changes. ANS is a small amphipathic dye (Fig. 1B) that has been used as a sensitive probe to detect hydrophobic pockets on protein surfaces (4144). Free ANS exhibits only weak fluorescence that is maximal near 520 nm, but when ANS binds to a hydrophobic site in a partially or fully folded protein, the fluorescence peak increases in amplitude and shifts to a shorter wavelength (42). ANS also has an anionic sulfonate group that can interact with cationic groups (e.g. Arg or Lys residues) through ion-pair formation which may be further strengthened by hydrophobic interactions (4346).Open in a separate windowFIGURE 1.A, WT SOD1 structure showing the position of the C57-C146 intrasubunit disulfide bond (S–S, yellow), bound copper and zinc ions, and ALS mutant residues. The residues altered in A4V, G85R, G93A, D124V, and S134N SOD1s are indicated as green spheres. The backbone of the β-barrel core and the loops is shown in a rainbow color, from blue at the amino terminus to red at the carboxyl terminus. The figure was generated using PyMOL (84) and PDB entry 1HL5 (22). B, chemical structure of ANS fluorophore.To evaluate further the importance of metal ion binding, we measured spectral changes related to the binding of cobalt and copper to the same SOD1 proteins. We observed that as-isolated WT-like mutants containing zinc could interact with copper ions to produce an electrophoretic mobility and decreased hydrophobicity resembling that of the fully metalated holo-WT SOD1. In contrast, we saw no evidence for copper binding to MBR mutants in a manner that alters their hydrodynamic properties or their hydrophobicity. Our data suggest that binding of both copper and zinc are important determinants of SOD1 conformation and that perturbation of such binding may be relevant to the ALS disease process.  相似文献   
109.
Active compound oleandrin extracted from Nerium indicum (Lal Kaner) leaf has potent piscicidal activity. The piscicidal activity of oleandrin on freshwater fish C. punctatus was both time and dose dependent. Exposure to sub-lethal doses of oleandrin for 24hr and 96hr to fish caused significant alteration in the level of total protein, total free amino acid, nucleic acid, glycogen, pyruvate, lactate and enzyme protease, phosphatases, alanine aminotransferase, aspartate aminotransferase and acetylcholinesterase activity in liver and muscle tissues. The alterations in all the above biochemical parameters were also significantly time and dose dependent. The results show a significant recovery in all the above biochemical parameters, in both liver and muscle tissues of fish after the 7th day of the withdrawal of treatment. Toxicity persistence test of oleandrin on juvenile Labeo rohita shows that fish seed of common culturing carp can be released into rearing ponds after three days of oleandrin treatment. It supports the view that the oleandrin is safer and may be useful substitute of other piscicides for removing the unwanted freshwater fishes from aquaculture ponds.  相似文献   
110.
The effect of elevated carbon dioxide (600±50 cm3 m−3; C600) on growth performance, biomass production, and photosynthesis of Cenchrus ciliaris L. cv. 3108 was studied. This crop responded significantly by plant height, leaf length and width, and biomass production under C600. Leaf area index increased triple fold in the crops grown in the open top chamber with C600. The biomass production in term of fresh and dry biomass accumulation increased by 134.35 (fresh) and 193.34 (dry) % over the control (C360) condition where the crops were grown for 20 d. The rate of photosynthesis and stomatal conductance increased by 24.51 and 46.33 %, respectively, in C600 over C360 plants. In comparison with C360, the rate of transpiration decreased by 6.8 % under C600. Long-term exposure (120 d) to C600 enhanced photosynthetic water use efficiency by 34 %. Also the contents of chlorophylls a and b significantly increased in C600. Thus C. ciliaris grown in C600 throughout the crop season may produce more fodder in terms of green biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号