首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2016年   2篇
  2015年   7篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   11篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1998年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1969年   2篇
  1967年   1篇
  1963年   1篇
  1937年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
11.
A general strategy to solve the phase problem in RNA crystallography   总被引:1,自引:0,他引:1  
X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding heavy-atom derivatives to obtain high-quality experimental phase information. Existing techniques have drawbacks, limiting the rate at which important new structures are solved. To address this, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G*U wobble pair cation binding motif, we have identified a version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This "directed soaking" strategy can be integrated fully into existing RNA crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kalpha radiation. This method already has been used to solve several crystal structures.  相似文献   
12.
Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD369↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed.  相似文献   
13.
14.
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.  相似文献   
15.
16.
The traditional microscope, together with the “routine” hematoxylin and eosin (H & E) stain, remains the “gold standard” for diagnosis of cancer and other diseases; remarkably, it and the majority of associated biological stains are more than 150 years old. Immunohistochemistry has added to the repertoire of “stains” available. Because of the need for specific identification and even measurement of “biomarkers,” immunohistochemistry has increased the demand for consistency of performance and interpretation of staining results. Rapid advances in the capabilities of digital imaging hardware and software now offer a realistic route to improved reproducibility, accuracy and quantification by utilizing whole slide digital images for diagnosis, education and research. There also are potential efficiencies in work flow and the promise of powerful new analytical methods; however, there also are challenges with respect to validation of the quality and fidelity of digital images, including the standard H & E stain, so that diagnostic performance by pathologists is not compromised when they rely on whole slide images instead of traditional stained tissues on glass slides.  相似文献   
17.
18.

Background  

Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken.  相似文献   
19.
Plains bristlegrass (Setaria macrostachya Kunth) is a native grass with forage value. However, due to the lack of grazing management practices, populations and thus genetic diversity, have been reduced. Morphological and genetic variability were analyzed on 44 populations of plains bristlegrass in the State of Chihuahua. Plants were transplanted in a common area under natural conditions. Two years later, morphological characterization was evaluated measuring nine variables, and genetic variability using AFLP molecular markers. The principal components analysis (PC) showed that the three first principal components explained 73.74% of the variation. The variables with the greatest contribution to the variance in PC1 were plant height and inflorescence length; in CP2, tiller number and leaf width; and in PC3, tiller thickness. Application of four pairs of primers, presented 186 total bands, from which 87.10% showed polymorphism and 12.90% monomorphism. The combination of EcoRI-AGG MseI-CAG primers detected the highest percentage (93%) of polymorphism with 40 polymorphic bands. The cluster analysis and Dice coefficient indicated that populations clump into two groups. The wide genetic variability and morphological characteristics detected among populations represent the basis for the selection of populations that could be used with different purposes in the rehabilitation of ecosystems. In addition, this study will allow establishment of in situ conservation strategies.  相似文献   
20.
Rambo RP  Tainer JA 《Biopolymers》2011,95(8):559-571
Unstructured proteins, RNA or DNA components provide functionally important flexibility that is key to many macromolecular assemblies throughout cell biology. As objective, quantitative experimental measures of flexibility and disorder in solution are limited, small angle scattering (SAS), and in particular small angle X-ray scattering (SAXS), provides a critical technology to assess macromolecular flexibility as well as shape and assembly. Here, we consider the Porod-Debye law as a powerful tool for detecting biopolymer flexibility in SAS experiments. We show that the Porod-Debye region fundamentally describes the nature of the scattering intensity decay by capturing the information needed for distinguishing between folded and flexible particles. Particularly for comparative SAS experiments, application of the law, as described here, can distinguish between discrete conformational changes and localized flexibility relevant to molecular recognition and interaction networks. This approach aids insightful analyses of fully and partly flexible macromolecules that is more robust and conclusive than traditional Kratky analyses. Furthermore, we demonstrate for prototypic SAXS data that the ability to calculate particle density by the Porod-Debye criteria, as shown here, provides an objective quality assurance parameter that may prove of general use for SAXS modeling and validation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号