首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   22篇
  2023年   1篇
  2022年   7篇
  2021年   17篇
  2020年   7篇
  2019年   7篇
  2018年   18篇
  2017年   10篇
  2016年   9篇
  2015年   28篇
  2014年   21篇
  2013年   49篇
  2012年   44篇
  2011年   41篇
  2010年   23篇
  2009年   13篇
  2008年   23篇
  2007年   26篇
  2006年   17篇
  2005年   22篇
  2004年   7篇
  2003年   17篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1986年   5篇
  1985年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有465条查询结果,搜索用时 685 毫秒
61.
62.
The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (~100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P < 0.05) the viability loss of LAB12 (viability loss <7%) when compared to Alg alone (viability loss <13%) under extreme temperatures (75 and 90 °C). Four-week storage of encapsulated LAB12 at 4 °C yielded viable counts >7 log CFU g?1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g?1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g?1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g?1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g?1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.  相似文献   
63.
64.
65.
Role of glutathione on kidney mitochondrial integrity and function during stone forming process in hyperoxaluric state was investigated in male albino rats of Wistar strain. Hyperoxaluria was induced by feeding ethylene glycol (EG) in drinking water. Glutathione was depleted by administering buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis. Glutathione monoester (GME) was administered for supplementing glutathione. BSO treatment alone or along with EG, depleted mitochondrial GSH by 40% and 51% respectively. Concomitantly, there was remarkable elevation in lipid peroxidation and oxidation of protein thiols. Mitochondrial oxalate binding was enhanced by 74% and 129% in BSO and BSO + EG treatment. Comparatively, EG treatment produced only a 33% increase in mitochondrial oxalate binding. Significant alteration in calcium homeostasis was seen following BSO and BSO + EG treatment. This may be due to altered mitochondrial integrity and function as evidenced from decreased activities of mitochondrial inner membrane marker enzymes, succinate dehydrogenase and cytochrome-c-oxidase and respiratory control ratio and enhanced NADH oxidation by mitochondria in these two groups. NADH oxidation (r = -0.74) and oxalate deposition in the kidney (r = -0.70) correlated negatively with mitochondrial glutathione depletion. GME supplementation restored normal level of GSH and maintained mitochondrial integrity and function, as a result of which oxalate deposition was prevented despite hyperoxaluria. These results suggest that mitochondrial dysfunction resulting from GSH depletion could be a contributing factor in the development of calcium oxalate stones.  相似文献   
66.
67.
68.
Leptospirosis is a worldwide reemerging tropical zoonotic disease with symptoms of mild febrile illness to more severe multiple organ failure caused by pathogenic leptospiral strains. There was no effective antibiotic for treating leptospirosis. Here, the anti-leptospiral potential of marine actinobacterial compound from Streptomyces indiaensis MSU5 isolated from Manakudy marine sediment, Tamil Nadu, India was evaluated. The potential actinobacterial strain was identified by phenotypic, cell wall, 16S rRNA gene sequence and phylogenetic analysis. In vitro anti-leptospiral activity of the actinobacterial compound was determined using broth microdilution test against various serovars of Leptospira with different concentration ranging from 15.625 to 500 µg/ml. Mass production of anti-leptospiral compound was carried out in agar surface fermentation with optimized condition and purified by preparative TLC. The purified fraction of anti-leptospiral compound named as MSU5-1, and it was confirmed by microdilution test. Remarkably, the compound MSU5-1 showed minimum inhibitory concentration of 62.5 µg/ml and minimum bactericidal concentration of 125 µg/ml against human pathogenic leptospiral isolate strain N2. The structural elucidation of purified compound was carried out using UV, FT-IR, NMR and LC-MS analysis. The compound MSU5-1 was tentatively identified as leptomycin B (C33H48O6) with molecular weight 541.1 g/mol. Anti-leptospiral activity of compound MSU5-1 exhibited 80% of survival rate in mice model, further it was confirmed by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis. From the available literature, this is the first report on the marine actinobacterial compound for evaluating both in vitro and in vivo leptospiricidal activity.  相似文献   
69.
Type I collagen from outer skin of Sepia pharaonis was extracted and partially characterized. Yield of Acid Soluble Collagen (ASC) and Pepsin Soluble Collagen (PSC) were calculated as 1.66% and 3.93% and the total protein content of ASC and PSC were found as 18.4% and 48.6%. FT-IR spectrum of ASC and PSC recorded 12 and 14 peaks, respectively. 1H NMR spectrum of ASC showed singlets at 1.23 ppm, 3.1 ppm, 3.55 ppm and 3.7 ppm and PSC at 1.23 ppm and 2.08 ppm. The molecular weight for ASC was calculated as 102 kDa and for PSC as 110, 108 and 102 kDa through SDS-PAGE. Differential Scanning Calorimetry (DSC) results supported that PSC withstand high thermal stability (82.85 °C) than ASC (73.13 °C). Higher denaturation temperature with high molecular weight well support the property of type I collagen from skin of S. pharaonis and it could be used as another potent source for the extraction of collagen.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号