首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   39篇
  2019年   3篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   16篇
  2014年   20篇
  2013年   30篇
  2012年   33篇
  2011年   27篇
  2010年   21篇
  2009年   21篇
  2008年   20篇
  2007年   23篇
  2006年   25篇
  2005年   15篇
  2004年   26篇
  2003年   19篇
  2002年   14篇
  2001年   13篇
  2000年   14篇
  1999年   15篇
  1998年   10篇
  1997年   11篇
  1996年   4篇
  1995年   9篇
  1994年   6篇
  1993年   3篇
  1992年   11篇
  1991年   13篇
  1990年   14篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1975年   4篇
  1974年   12篇
  1972年   6篇
  1971年   4篇
  1968年   2篇
  1967年   2篇
  1966年   6篇
  1960年   2篇
排序方式: 共有578条查询结果,搜索用时 15 毫秒
101.
The critical role of IFN-α in the pathogenesis of human systemic lupus erythematosus has been highlighted in recent years. Exposure of young lupus-prone NZB/W F1 mice to IFN-α in vivo leads to an accelerated lupus phenotype that is dependent on T cells and is associated with elevated serum levels of BAFF, IL-6, and TNF-α, increased splenic expression of IL-6 and IL-21, formation of large germinal centers, and the generation of large numbers of short-lived plasma cells that produce IgG2a and IgG3 autoantibodies. In this study, we show that both IgG2a and IgG3 autoantibodies are pathogenic in IFN-α-accelerated lupus, and their production can be dissociated by using low-dose CTLA4-Ig. Only high-dose CTLA4-Ig attenuates both IgG2a and IgG3 autoantibody production and significantly delays death from lupus nephritis. In contrast, BAFF/APRIL blockade has no effect on germinal centers or the production of IgG anti-dsDNA Abs but, if given at the time of IFN-α challenge, delays the progression of lupus by attenuating systemic and renal inflammation. Temporary remission of nephritis induced by combination therapy with cyclophosphamide, anti-CD40L Ab, and CTLA4-Ig is associated with the abrogation of germinal centers and depletion of short-lived plasma cells, but relapse occurs more rapidly than in conventional NZB/W F1 mice. This study demonstrates that IFN-α renders NZB/W F1 relatively resistant to therapeutic intervention and suggests that the IFN signature should be considered when randomizing patients into groups and analyzing the results of human clinical trials in systemic lupus erythematosus.  相似文献   
102.
103.
Intercellular communication in bacteria (quorum sensing, QS) is an important phenomenon in disease dissemination and pathogenesis, which controls biofilm formation also. This study reports the anti-QS and anti-biofilm efficacy of seaweed Gracilaria gracilis associated Vibrio alginolyticus G16 against Serratia marcescens. Purification and mass spectrometric analysis revealed the active principle as phenol, 2,4-bis(1,1-dimethylethyl) [PD]. PD affected the QS regulated virulence factor production in S. marcescens and resulted in a significant (p < 0.05) reduction in biofilm (85%), protease (41.9%), haemolysin (69.9%), lipase (84.3%), prodigiosin (84.5%) and extracellular polysaccharide (84.62%) secretion without hampering growth, as evidenced by XTT [2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. qPCR analysis confirmed the down-regulation of the fimA, fimC, flhD and bsmA genes involved in biofilm formation. Apart from biofilm inhibition and disruption, PD increased the susceptibility of S. marcescens to gentamicin when administered synergistically, which opens another avenue for combinatorial therapy where PD can be used to enhance the efficacy of conventional antibiotics.  相似文献   
104.
105.
When monitoring response to cancer therapy, it is important to differentiate changes in glucose tracer uptake caused by altered delivery versus a true metabolic shift. Here, we propose an optical imaging method to quantify glucose uptake and correct for in vivo delivery effects. Glucose uptake was measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-D-glucose (2-NBDG) in mice implanted with dorsal skin flap window chambers. Additionally, vascular oxygenation (SO2) was calculated using only endogenous hemoglobin contrast. Results showed that the delivery factor proposed for correction, “RD”, reported on red blood cell velocity and injected 2-NBDG dose. Delivery-corrected 2-NBDG uptake (2-NBDG60/RD) inversely correlated with blood glucose in normal tissue, indicating sensitivity to glucose demand. We further applied our method in metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. The ratio 2-NBDG60/RD was increased in 4T1 tumors relative to 4T07 tumors yet average SO2 was comparable, suggesting a shift toward a “Warburgian” (aerobic glycolysis) metabolism in the metastatic 4T1 line. In heterogeneous regions of both 4T1 and 4T07, 2-NBDG60/RD increased slightly but significantly as vascular oxygenation decreased, indicative of the Pasteur effect in both tumors. These data demonstrate the utility of delivery-corrected 2-NBDG and vascular oxygenation imaging for differentiating metabolic phenotypes in vivo.  相似文献   
106.
The presence of aspartic protease inhibitor in filarial parasite Brugia malayi (Bm-Aspin) makes it interesting to study because of the fact that the filarial parasite never encounters the host digestive system. Here, the aspartic protease inhibition kinetics of Bm-Aspin and its NMR structural characteristics have been investigated. The overall aim of this study is to explain the inhibition and binding properties of Bm-Aspin from its structural point of view. UV-spectroscopy and multi-dimensional NMR are the experiments that have been performed to understand the kinetic and structural properties of Bm-Aspin respectively. The human aspartic proteases that are considered for this study are pepsin, renin, cathepsin-E and cathepsin-D. The results of this analysis performed with the specific substrate [Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu (4-pyridylmethyl) ester] against aspartic proteases suggest that Bm-Aspin inhibits the activities of all four human aspartic proteases. The kinetics studies indicate that Bm-Aspin follows a competitive mode of inhibition for pepsin and cathepsin-E, non-competitive for renin and mixed mode for cathepsin-D. The triple resonance NMR experiments on Bm-Aspin suggested the feasibility of carrying out NMR studies to obtain its solution structure. The NMR titration studies on the interactions of Bm-Aspin with the proteases indicate that it undergoes fast-exchange phenomena among themselves. In addition to this, the chemical shift perturbations for some of the residues of Bm-Aspin observed from 15N-HSQC spectra upon the addition of saturated amounts of aspartic proteases suggest the binding between Bm-Aspin and human aspartic proteases. They also provide information on the variations in the intensities and mode of binding between the proteases duly corroborating with the results from the protease inhibition assay method.  相似文献   
107.
MreB, the bacterial ancestor of eukaryotic actin, is responsible for shape in most rod-shaped bacteria. Despite belonging to the actin family, the relevance of nucleotide-driven polymerization dynamics for MreB function is unclear. Here, we provide insights into the effect of nucleotide state on membrane binding of Spiroplasma citri MreB5 (ScMreB5). Filaments of ScMreB5WT and an ATPase-deficient mutant, ScMreB5E134A, assemble independently of the nucleotide state. However, capture of the filament dynamics revealed that efficient filament formation and organization through lateral interactions are affected in ScMreB5E134A. Hence, the catalytic glutamate functions as a switch, (a) by sensing the ATP-bound state for filament assembly and (b) by assisting hydrolysis, thereby potentially triggering disassembly, as observed in other actins. Glu134 mutation and the bound nucleotide exhibit an allosteric effect on membrane binding, as observed from the differential liposome binding. We suggest that the conserved ATP-dependent polymerization and disassembly upon ATP hydrolysis among actins has been repurposed in MreBs for modulating filament organization on the membrane.  相似文献   
108.
The reversal effect of troxerutin (TX) on obesity, insulin resistance, lipid accumulation, oxidative damage, and hypertension induced in the high-fat–high-fructose diet (HFFD)-fed mice model of metabolic syndrome was investigated. Adult male Mus musculus mice of body weight 25–30 g were fed either control diet or HFFD. Each group was divided into two and treated or untreated with TX (150 mg/kg bw, p.o.) from the 16th day. Assays were done in plasma and heart after 30 and 60 days of the experimental period. Significant increase in the levels of glucose and insulin, blood pressure (BP), and oxidative stress were observed after 30 days of HFFD feeding as compared to control. Animals fed HFFD for 60 days developed more severe changes in the above parameters compared to those fed for 30 days. Hearts of HFFD-fed mice registered downregulation of peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor gamma coactivator-1α, carnitine palmitoyl transferse-1b and AMP-activated protein kinase; and upregulation of cluster of differentiation 36, fatty acid-binding protein-1, and sterol regulatory element-binding protein-1c after 60 days. TX administration restricted obesity (as seen by Lee’s index); improved whole body insulin sensitivity; reduced BP, lipid accumulation, and oxidative damage; upregulated fatty acid (FA) oxidation; and downregulated FA transport and lipogenesis. Histology of heart revealed that TX diminishes inflammatory cell infiltration and fatty degeneration in HFFD-fed mice. The antioxidant property of TX and its ability to influence lipid regulatory genes could be the underlying mechanisms for its beneficial effects.  相似文献   
109.
110.
Escherichia coli DNA photolyase was overproduced and purified from each of two mutant E. coli strains lacking dihydrofolate reductase. The extent of over-production in the mutants was comparable to that seen in the wild type strain. Examination of the isolated photolyase from these strains revealed that the folate cofactor, 5,10-methenyltetrahydrofolate, was present in these proteins at a level of 60-80% compared to that purified from the wild type strain. Further examination of the dihydrofolate reductase-deficient strains revealed the presence of other tetrahydrofolate derivatives. These findings demonstrate that dihydrofolate reductase is not essential for the production of tetrahydrofolates in E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号