首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   80篇
  2021年   17篇
  2020年   10篇
  2019年   8篇
  2018年   14篇
  2017年   8篇
  2016年   17篇
  2015年   34篇
  2014年   41篇
  2013年   49篇
  2012年   52篇
  2011年   44篇
  2010年   33篇
  2009年   27篇
  2008年   44篇
  2007年   43篇
  2006年   34篇
  2005年   31篇
  2004年   29篇
  2003年   22篇
  2002年   36篇
  2001年   23篇
  2000年   18篇
  1999年   17篇
  1998年   11篇
  1997年   15篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   11篇
  1989年   10篇
  1988年   10篇
  1987年   6篇
  1986年   13篇
  1985年   15篇
  1984年   14篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1979年   15篇
  1975年   6篇
  1974年   15篇
  1973年   5篇
  1972年   10篇
  1971年   7篇
  1970年   8篇
  1969年   5篇
  1968年   5篇
  1967年   5篇
  1966年   9篇
排序方式: 共有931条查询结果,搜索用时 609 毫秒
31.
The isolation and structure determination of a glycosidic germacradienolide from Eupatorium altissimum are reported. Eupatorin and 5-hydroxy-3′,4′,6,7-tetramethoxyflavone were also found.  相似文献   
32.
33.
Breast Cancer (BCa) is the most often diagnosed cancer among women who were in the late 1940’s. Breast cancer growth is largely dependent on the expression of estrogen and progesterone receptor. Breast cancer cells may have one, both, or none of these receptors. The treatment for breast cancer may involve surgery, hormonal therapy (Tamoxifen, an aromatase inhibitor, etc.) and oral chemotherapeutic drugs. The molecular docking technique reported the findings on the potential binding modes of the 2‐(2‐bromo‐3‐nitrophenyl)‐5‐phenyl‐1,3,4‐oxadiazole derivatives with the estrogen receptor (PDB ID: 3ERT). The 1,3,4‐oxadiazole derivatives 4a – 4j have been synthesized and described by spectroscopic method. 2‐(2‐Bromo‐6‐nitrophenyl)‐5‐(4‐bromophenyl)‐1,3,4‐oxadiazole ( 4c ) was reconfirmed by single‐crystal XRD. All the compounds have been tested in combination with generic Imatinib pharmaceutical drug against breast cancer cell lines isolated from Caucasian woman MCF‐7, MDA‐MB‐453 and MCF‐10A non‐cancer cell lines. The compounds with the methoxy (in 4c ) and methyl (in 4j ) substitution were shown to have significant cytotoxicity, with 4c showing dose‐dependent activation and decreased cell viability. The mechanism of action was reported by induced apoptosis and tested by a DNA enzyme inhibitor experiment (ELISA) for Methyl Transferase. Molecular dynamics simulations were made for hit molecule 4c to study the stability and interaction of the protein?ligand complex. The toxicity properties of ADME were calculated for all the compounds. All these results provide essential information for further clinical trials.  相似文献   
34.
35.
36.
Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.  相似文献   
37.
Phenol is a toxic compound and is one of the major pollutants contained in the waste water from petroleum and its downstream industries. Response surface methodology (RSM) was used to optimize medium composition and culture condition for enhancement of growth of Rhodococcus UKMP-5M and phenol degradation rate in shake flask cultures. Phenol and (NH4)2SO4 concentrations as well as temperature were the most significant factors that influenced growth and phenol degradation. Central composite design (CCD) was used for optimization of these parameters with growth, and degradation rates were used as the responses. Cultivation with 0.5 g/L phenol and 0.3 g/L (NH4)2SO4 and incubation at 36 °C greatly enhanced growth of Rhodococcus UKMP-5M, where the final cell concentration increased from 0.117 g/L to 0.376 g/L. On the other hand, the degradation rate was greatly increased in cultivation with 0.7 g/L phenol and 0.4 g/L (NH4)2SO4 and incubation at 37 °C. In this cultivation, the time taken to degrade 1 g/L phenol in the culture was reduced from 48 h to 27 h. The model for both responses was found significant and the predicted values were found to be in a good agreement with experimental values and subsequently validated. Increases in phenol degradation rate during Rhodococcus UKMP-5M cultivation corresponded well with increasing phenol hydroxylase activity.  相似文献   
38.
Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.  相似文献   
39.
Analysis of any mammalian plasma proteome is a challenge, particularly by mass spectrometry, due to the presence of albumin and other abundant proteins which can mask the detection of low abundant proteins. As detection of human plasma proteins is valuable in diagnostics, exploring various workflows with minimal fractionation prior to mass spectral analysis, is required in order to study population diversity involving analysis in a large cohort of samples. Here, we used ‘reference plasma sample’, a pool of plasma from 10 healthy individuals from Indian population in the age group of 25–60 yrs including 5 males and 5 females. The 14 abundant proteins were immunodepleted from plasma and then evaluated by three different workflows for proteome analysis using a nanoflow reverse phase liquid chromatography system coupled to a LTQ Orbitrap Velos mass spectrometer. The analysis of reference plasma sample a) without prefractionation, b) after prefractionation at peptide level by strong cation exchange chromatography and c) after prefractionation at protein level by sodium dodecyl sulfate polyacrylamide gel electrophoresis, led to the identification of 194, 251 and 342 proteins respectively. Together, a comprehensive dataset of 517 unique proteins was achieved from all the three workflows, including 271 proteins with high confidence identified by≥2 unique peptides in any of the workflows or identified by single peptide in any of the two workflows. A total of 70 proteins were common in all the three workflows. Some of the proteins were unique to our study and could be specific to Indian population. The high-confidence dataset obtained from our study may be useful for studying the population diversity, in discovery and validation process for biomarker identification.  相似文献   
40.
The β-1,4-galactosyltransferase 7 (β4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human β4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type β4GalT7 and D211N β4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N β4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the β4GalT7 enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号