首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1062篇
  免费   73篇
  2022年   6篇
  2021年   16篇
  2020年   9篇
  2019年   14篇
  2018年   17篇
  2017年   10篇
  2016年   13篇
  2015年   23篇
  2014年   48篇
  2013年   69篇
  2012年   64篇
  2011年   62篇
  2010年   32篇
  2009年   34篇
  2008年   58篇
  2007年   61篇
  2006年   45篇
  2005年   59篇
  2004年   44篇
  2003年   31篇
  2002年   52篇
  2001年   24篇
  2000年   22篇
  1999年   20篇
  1998年   17篇
  1997年   20篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   14篇
  1992年   13篇
  1991年   17篇
  1990年   17篇
  1989年   9篇
  1988年   6篇
  1987年   24篇
  1986年   7篇
  1985年   10篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   8篇
  1978年   11篇
  1977年   5篇
  1976年   12篇
  1975年   7篇
  1973年   6篇
  1970年   8篇
排序方式: 共有1135条查询结果,搜索用时 31 毫秒
961.
Cloudiness or opacity (cloudy appearance) is an important property in citrus beverages, since it enhances their juice-like appearance and gives it a natural fruit juice appeal. This property is achievable through the addition of oil-in-water emulsions known as clouding agents. These emulsions are thermodynamically unstable and tend to break down during storage. Moreover, product and legal constraints put severe limits on materials that can be used to insure emulsion stability, particularly the introduction of weighting agents into the oil phase. Weighing agents (density-adjusting agents) are lipophilic compounds with specific gravity higher than that of water and have a restricted use because of the perceived health risk disadvantage, undesirable taste, and oxidative instability. The stability of beverage emulsions is a problem of serious concern faced by the flavor and beverage industry. This paper provides an overview of research carried out by the authors on basic factors affecting the physical stability of beverage cloud emulsions having a bearing on droplet size/distribution, rheological properties of emulsion and phases components, and the stability of emulsion in concentrated and diluted forms with or without addition of weighting agents. Delivery of Functionality in Complex Food Systems: Physically-Inspired Approaches From Nanoscale To Microscale University of Massachusetts, Amherst, October 8–10, 2007  相似文献   
962.
963.
Biodegradable polycaprolactone and collagen nanofibers were produced by electrospinning, with fiber diameters of around 300-700nm and features similar to the extracellular matrix of natural tissue. Human coronary artery smooth muscle cells (SMCs) seeded on nanofibrous matrices tend to maintain normal phenotypic shape and growth tends to be guided by the nanofiber orientation. The SMC and nanofibrous matrix interaction was observed by SEM, MTS assay, trypan blue exclusion method and laser scanning confocal microscopy. The results showed that the proliferation and growth rate of SMCs were not different on polycaprolactone (PCL) nanofibrous matrices coated with collagen or tissue culture plates. PCL nanofibrous matrices coated with collagen showed that the SMCs migrated towards inside the nanofibrous matrices and formed smooth muscle tissue. This approach may be useful for engineering a variety of tissues in various structures and shapes, and also to demonstrate the importance of matching both the initial mechanical properties and degradation rate of nanofibrous matrices to the specific tissue engineering.  相似文献   
964.
965.
Recent studies from our laboratory and others have demonstrated the involvement of monocarboxylate transporter (MCT)1 in the luminal uptake of short-chain fatty acids (SCFAs) in the human intestine. Functional studies from our laboratory previously demonstrated kinetically distinct SCFA transporters on the apical and basolateral membranes of human colonocytes. Although apical SCFA uptake is mediated by the MCT1 isoform, the molecular identity of the basolateral membrane SCFA transporter(s) and whether this transporter is encoded by another MCT isoform is not known. The present studies were designed to assess the expression and membrane localization of different MCT isoforms in human small intestine and colon. Immunoblotting was performed with the purified apical and basolateral membranes from human intestinal mucosa obtained from organ donor intestine. Immunohistochemistry studies were done on paraffin-embedded sections of human colonic biopsy samples. Immunoblotting studies detected a protein band of 39 kDa for MCT1, predominantly in the apical membranes. The relative abundance of MCT1 mRNA and protein increased along the length of the human intestine. MCT4 (54 kDa) and MCT5 (54 kDa) isoforms showed basolateral localization and were highly expressed in the distal colon. Immunohistochemical studies confirmed that human MCT1 antibody labeling was confined to the apical membranes, whereas MCT5 antibody staining was restricted to the basolateral membranes of the colonocytes. We speculate that distinct MCT isoforms may be involved in SCFA transport across the apical or basolateral membranes in polarized colonic epithelial cells. monocarboxylate transporter; short-chain fatty acids; absorption; short-chain fatty acid transport; mammalian colon  相似文献   
966.
A structure-activity relationship study of the amine portion of the calcilytic compound NPS-2143 resulted in the discovery of substituted 2-benzylpyrrolidines as replacements for the 1,1-dimethyl-2-naphthalen-2-yl-ethylamine. When compared to NPS-2143, a newly discovered compound, 3h, exhibited similar potency as a calcium-sensing receptor (CaR) antagonist and a superior human ether-a-go-go related gene (hERG) profile.  相似文献   
967.
The proposed kinetic folding mechanism of the alpha-subunit of tryptophan synthase (alphaTS), a TIM barrel protein, displays multiple unfolded and intermediate forms which fold through four parallel pathways to reach the native state. To obtain insight into the secondary structure that stabilizes a set of late, highly populated kinetic intermediates, the refolding of urea-denatured alphaTS from Escherichia coli was monitored by pulse-quench hydrogen exchange mass spectrometry. Following dilution from 8 M urea, the protein was pulse-labeled with deuterium, quenched with acid and mass analyzed by electrospray ionization mass spectrometry (ESI-MS). Hydrogen bonds that form prior to the pulse of deuterium offer protection against exchange and, therefore, retain protons at the relevant amide bonds. Consistent with the proposed refolding model, an intermediate builds up rapidly and decays slowly over the first 100 seconds of folding. ESI-MS analysis of the peptic fragments derived from alphaTS mass-labeled and quenched after two seconds of refolding indicates that the pattern of protection of the backbone amide hydrogens in this transient intermediate is very similar to that observed previously for the equilibrium intermediate of alphaTS highly populated at 3 M urea. The protection observed in a contiguous set of beta-strands and alpha-helices in the N terminus implies a significant role for this sub-domain in directing the folding of this TIM barrel protein.  相似文献   
968.
Competing views of the products of sub-millisecond folding reactions observed in many globular proteins have been ascribed either to the formation of discrete, partially folded states or to the random collapse of the unfolded chain under native-favoring conditions. To test the validity of these alternative interpretations for the stopped-flow burst-phase reaction in the (betaalpha)8, TIM barrel motif, a series of alanine replacements were made at five different leucine or isoleucine residues in the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli. This protein has been proposed to fold, in the sub-millisecond time range, to an off-pathway intermediate with significant stability and approximately 50% of the far-UV circular dichroism (CD) signal of the native conformation. Individual alanine replacements at any of three isoleucine or leucine residues in either alpha1, beta2 or beta3 completely eliminate the off-pathway species. These variants, within 5 ms, access an intermediate whose properties closely resemble those of an on-pathway equilibrium intermediate that is highly populated at moderate urea concentrations in wild-type alphaTS. By contrast, alanine replacements for leucine residues in either beta4 or beta6 destabilize but preserve the off-pathway, burst-phase species. When considered with complementary thermodynamic and kinetic data, this mutational analysis demonstrates that the sub-millisecond appearance of CD signal for alphaTS reflects the acquisition of secondary structure in a distinct thermodynamic state, not the random collapse of an unfolded chain. The contrasting results for replacements in the contiguous alpha1/beta2/beta3 domain and the C-terminal beta4 and beta6 strands imply a heterogeneous structure for the burst-phase species. The alpha1/beta2/beta3 domain appears to be tightly packed, and the C terminus appears to behave as a molten-globule-like structure whose folding is tightly coupled to that of the alpha1/beta2/beta3 domain.  相似文献   
969.
The three-dimensional structure of thioredoxin from Trypanosoma brucei brucei has been determined at 1.4 A resolution. The overall structure is more similar to that of human thioredoxin than to any other thioredoxin structure. The most striking difference to other thioredoxins is the absence of a buried carboxylate behind the active site cysteines. Instead of the common Asp, there is a Trp that binds an ordered water molecule probably involved in the protonation/deprotonation of the more buried cysteine during catalysis. The conserved Trp in the WCGPC sequence motif has an exposed position that can interact with target proteins.  相似文献   
970.
Small heat shock proteins (sHsps) are necessary for several cellular functions and in stress tolerance. Most sHsps are oligomers; intersubunit interactions leading to changes in oligomeric structure and exposure of specific regions may modulate their functioning. Many sHsps, including alpha A- and alpha B-crystallin, contain a well conserved SRLFDQFFG sequence motif in the N-terminal region. Sequence-based prediction shows that it exhibits helical propensity with amphipathic character, suggesting that it plays a critical role in the structure and function of alpha-crystallins. In order to investigate the role of this motif in the structure and function of sHsps, we have made constructs deleting this sequence from alpha A- and alpha B-crystallin, overexpressed, purified, and studied these engineered proteins. Circular dichroism spectroscopic studies show changes in tertiary and secondary structure on deletion of the sequence. Glycerol density gradient centrifugation and dynamic light scattering studies show that the multimeric size of the mutant proteins is significantly reduced, indicating a role for this motif in higher order organization of the subunits. Both deletion mutants exhibit similar oligomeric size and increased chaperone-like activity. Urea-induced denaturation study shows that the SRLFDQFFG sequence contributes significantly to the structural stability. Fluorescence resonance energy transfer studies show that the rate of exchange of the subunits in the alpha Adel-crystallin oligomer is higher compared with that in the alpha A-crystallin oligomer, suggesting that this region contributes to the oligomer dynamics in addition to the higher order assembly and structural stability. Thus, our study shows that the SRLFDQFFG sequence is one of the critical motifs in structure-function regulation of alpha A- and alpha B-crystallin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号