首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   49篇
  2022年   4篇
  2021年   9篇
  2020年   8篇
  2019年   10篇
  2018年   7篇
  2017年   9篇
  2016年   7篇
  2015年   14篇
  2014年   22篇
  2013年   32篇
  2012年   39篇
  2011年   45篇
  2010年   17篇
  2009年   25篇
  2008年   38篇
  2007年   36篇
  2006年   23篇
  2005年   33篇
  2004年   25篇
  2003年   18篇
  2002年   30篇
  2001年   9篇
  2000年   5篇
  1999年   10篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   11篇
  1992年   10篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1988年   3篇
  1987年   10篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1981年   5篇
  1979年   4篇
  1978年   9篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   6篇
排序方式: 共有641条查询结果,搜索用时 142 毫秒
81.
Environment dependence of folding and unfolding of a protein is central to its function. In the same vein, knowledge of pH dependence of stability and folding/unfolding is crucial for many biophysical equilibrium and kinetic studies designed to understand protein folding mechanisms. In the present study we investigated the guanidine induced unfolding transition of dynein light chain protein (DLC8), a cargo adaptor of the dynein complex in the pH range 7-10. It is observed that while the protein remains a dimer in the entire pH range, its stability is somewhat reduced at alkaline pH. Global unfolding features monitored using fluorescence spectroscopy revealed that the unfolding transition of DLC8 at pH 7 is best described by a three-state model, whereas, that at pH 10 is best described by a two-state model. Chemical shift perturbations due to pH change provided insights into the corresponding residue level structural perturbations in the DLC8 dimer. Likewise, backbone (15)N relaxation measurements threw light on the corresponding motional changes in the dimeric protein. These observations have been rationalized on the basis of expected changes with increasing pH in the protonation states of the titratable residues on the structure of the protein. These, in turn provide an explanation for the change from three-state to two-state guanidine induced unfolding transition as the pH is increased from 7 to 10. All these results exemplify and highlight the role of environment vis-à-vis the sequence and structure of a given protein in dictating its folding/unfolding characteristics.  相似文献   
82.
Escherichia coli is one of the most important pathogens involved in the development of neonatal meningitis in many parts of the world. Traversal of E. coli across the blood-brain barrier is a crucial event in the pathogenesis of E. coli meningitis. Our previous studies have shown that outer membrane protein A (OmpA) expression is necessary in E. coli for a mechanism involving actin filaments in its passage through the endothelial cells. Focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) have also been activated in host cells during the process of invasion. In an attempt to elucidate the mechanisms leading to actin filament condensation, we have focused our attention on protein kinase C (PKC), an enzyme central to many signaling events, including actin rearrangement. In the current study, specific PKC inhibitors, bisindolmaleimide and a PKC-inhibitory peptide, inhibited E. coli invasion of human brain microvascular endothelial cells (HBMEC) by more than 75% in a dose-dependent manner, indicating a significant role played by this enzyme in the invasion process. Our results further showed that OmpA+ E. coli induces significant activation of PKC in HBMEC as measured by the PepTag nonradioactive assay. In addition, we identified that the PKC isoform activated in E. coli invasion is a member of the conventional family of PKC, PKC-alpha, which requires calcium for activation. Immunocytochemical studies have indicated that the activated PKC-alpha is associated with actin condensation beneath the bacterial entry site. Overexpression of a dominant negative mutant of PKC-alpha in HBMEC abolished the E. coli invasion without significant changes in FAK phosphorylation or PI3K activity patterns. In contrast, in HBMEC overexpressing the mutant forms of either FAK or PI3K, E. coli-induced PKC activation was significantly blocked. Furthermore, our studies showed that activation of PKC-alpha induces the translocation of myristoylated alanine-rich protein kinase C substrate, an actin cross-linking protein and a substrate for PKC-alpha, from the membrane to cytosol. This is the first report of FAK- and PI3K-dependent PKC-alpha activation in bacterial invasion related to cytoskeletal reorganization.  相似文献   
83.
Kumar  Ram  Rao  T. Ramakrishna 《Hydrobiologia》2001,(1):261-268
In many shallow, eutrophic subtropical ponds, brachionid rotifers are common prey of the predatory copepod Mesocyclops thermocyclopoides. The predatory rotifer Asplanchna intermedia, which is itself a potential prey of the copepod, also feeds preferentially on brachionids. We studied in the laboratory the population dynamics of two mutually competing prey species, Brachionus angularis and B. calyciflorus, in the presence of the two predators A. intermedia and M. thermocyclopoides. The experimental design included separate population dynamics studies with one prey–one predator, two prey–one predator, one prey–two predator, and two prey–two predator systems. These combinations were compared with controls, in which both the prey species (B. angularis and B. calyciflorus) were grown separately and in combination with each other. In the absence of any predator, B. angularis generally eliminated the larger B. calyciflorus. Selective predation by the copepod allowed B. calyciflorus to persist longer in competition with B. angularis. Feeding by M. thermocyclopoides on A. intermedia reduced the predation pressure on B. calyciflorus. However, given enough time, the cyclopoid copepod was able to eliminate both the brachionids as well as the predatory Asplanchna.  相似文献   
84.
Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5–8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.  相似文献   
85.
86.
The calcineurin-NFAT signaling pathway regulates cell proliferation, differentiation, and development in diverse cell types and organ systems. Deregulation of calcineurin-NFAT signaling has been reported in leukaemias and few solid tumors such as breast and colon. In the present study, we found elevated calcineurin protein levels and phosphatase activity in cervical cancer cell lines and depletion of the same attenuated cell proliferation. Additionally, nuclear levels of NFAT2, a downstream target of calcineurin, viz, was found elevated in human papillomavirus (HPV) infected cells, HeLa and SiHa, compared to the HPV negative cells, HaCaT and C33A, indicative of its higher DNA binding activity. The nuclear levels of both NFAT1 and NFAT3 remain unaltered implicating they have little role in cervical carcinogenesis. Similar to the in vitro studies, the HPV infected human squamous cell carcinoma specimens showed higher NFAT2 levels compared to the normal cervical epithelium. Depletion of NFAT2 by RNAi attenuated growth of SiHa cells. Overexpression of HPV16 oncoproteins viz, E6 and E7 increased NFAT2 expression levels and DNA binding activity, while knockdown of E6 by RNAi decreased the same. Briefly, we now report an activation of calcineurin-NFAT2 axis in cervical cancer and a novel role of HPV oncoprotein in facilitating NFAT2 dependent cell proliferation.  相似文献   
87.
88.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   
89.
A new “wireless” paradigm for harvesting mechanical energy via a 3D‐printed wireless triboelectric nanogenerator (W‐TENG) comprised of an ecofriendly graphene polylactic acid (gPLA) nanocomposite and Teflon is demonstrated. The W‐TENG generates very high output voltages >2 kV with a strong electric field that enables the wireless transmission of harvested energy over a distance of 3 m. The W‐TENG exhibited an instantaneous peak power up to 70 mW that could be wirelessly transmitted for storage into a capacitor obviating the need for hard‐wiring or additional circuitry. Furthermore, the use of W‐TENG for wireless and secure actuation of smart‐home applications such as smart tint windows, temperature sensors, liquid crystal displays, and security alarms either with a single or a specific user‐defined passcode of mechanical pulses (e.g., Fibonacci sequence) is demonstrated. The scalable additive manufacturing approach for gPLA‐based W‐TENGs, along with their high electrical output and unprecedented wireless applications, is poised for revolutionizing the present mechanical energy harvesting technologies.  相似文献   
90.
The NMR structure of 2',5' d(GGGGCCCC) was determined to gain insights into the structural differences between 2',5'- and 3',5'-linked DNA duplexes that may be relevant in elucidating nature's choice of sugar-phosphate links to encode genetic information. The oligomer assumes a duplex with extended nucleotide repeats formed out of mostly N-type sugar puckers. With the exception of the 5'-terminal guanine that assumes the syn glycosyl conformation, all other bases prefer the anti glycosyl conformation. Base pairs in the duplex exhibit slide (-1.96 A) and intermediate values for X-displacement (-3.23 A), as in ADNA, while their inclination to the helical axis is not prominent. Major and minor grooves display features intermediate to A and BDNA. The duplex structure of iso d(GGGGCCCC) may therefore be best characterized as a hybrid of A and BDNA. Importantly, the results confirm that even 3' deoxy 2',5' DNA supports duplex formation only in the presence of distinct slide (>or=-1.6 A) and X-displacement (>or=-2.5 A) for base pairs, and hence does not favor an ideal BDNA topology characterized by their near-zero values. Such restrictions on base pair movements in 2',5' DNA, which are clearly absent in 3',5' DNA, are expected to impose constraints on its ability for deformability of the kind observed in DNA during its compaction and interaction with proteins. It is therefore conceivable that selection pressure relating to the optimization of topological features might have been a factor in the rejection of 2',5' links in preference to 3',5' links.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号