全文获取类型
收费全文 | 2048篇 |
免费 | 95篇 |
国内免费 | 2篇 |
专业分类
2145篇 |
出版年
2023年 | 11篇 |
2022年 | 29篇 |
2021年 | 57篇 |
2020年 | 41篇 |
2019年 | 24篇 |
2018年 | 31篇 |
2017年 | 29篇 |
2016年 | 65篇 |
2015年 | 90篇 |
2014年 | 105篇 |
2013年 | 134篇 |
2012年 | 179篇 |
2011年 | 163篇 |
2010年 | 114篇 |
2009年 | 69篇 |
2008年 | 100篇 |
2007年 | 121篇 |
2006年 | 99篇 |
2005年 | 97篇 |
2004年 | 83篇 |
2003年 | 87篇 |
2002年 | 60篇 |
2001年 | 24篇 |
2000年 | 22篇 |
1999年 | 18篇 |
1998年 | 21篇 |
1997年 | 16篇 |
1996年 | 17篇 |
1995年 | 15篇 |
1994年 | 15篇 |
1993年 | 12篇 |
1992年 | 22篇 |
1991年 | 11篇 |
1990年 | 14篇 |
1989年 | 8篇 |
1988年 | 15篇 |
1987年 | 13篇 |
1986年 | 9篇 |
1985年 | 8篇 |
1984年 | 10篇 |
1983年 | 8篇 |
1982年 | 7篇 |
1980年 | 7篇 |
1979年 | 8篇 |
1978年 | 4篇 |
1976年 | 12篇 |
1975年 | 5篇 |
1973年 | 6篇 |
1970年 | 4篇 |
1963年 | 3篇 |
排序方式: 共有2145条查询结果,搜索用时 15 毫秒
71.
Bandana Baniya Narayan Dutt Pant Sanjeev Neupane Saroj Khatiwada Uday Narayan Yadav Nisha Bhandari Rama Khadka Sabita Bhatta Raina Chaudhary 《Annals of clinical microbiology and antimicrobials》2017,16(1):70
Introduction
Pseudomonas aeruginosa and Acinetobacter spp. are found to be associated with biofilm and metallo-β-lactamase production and are the common causes of serious infections mainly in hospitalized patients. So, the main aims of this study were to determine the rates of biofilm production and metallo beta-lactamase production (MBL) among the strains of Pseudomonas aeruginosa and Acinetobacter spp. isolated from hospitalized patients.Methods
A total of 85 P. aeruginosa isolates and 50 Acinetobacter spp. isolates isolated from different clinical specimens from patients admitted to Shree Birendra Hospital, Kathmandu, Nepal from July 2013 to May 2014 were included in this study. The bacterial isolates were identified with the help of biochemical tests. Modified Kirby-Bauer disc diffusion technique was used for antimicrobial susceptibility testing. Combined disc diffusion technique was used for the detection of MBL production, while Congo red agar method and tube adherence method were used for detection of biofilm production.Results
Around 16.4% of P. aeruginosa isolates and 22% of the strains of Acinetobacter spp. were metallo β-lactamase producers. Out of 85 P. aeruginosa isolates, 23 (27.05%) were biofilm producers according to tube adherence test while, only 13 (15.29%) were biofilm producers as per Congo red agar method. Similarly, out of 50 Acinetobacter spp. 7 (14%) isolates were biofilm producers on the basis of tube adherence test, while only 5 (10%) were positive for biofilm production by Congo red agar method. Highest rates of susceptibility of P. aeruginosa as well as Acinetobacter spp. were seen toward colistin.Conclusion
In our study, biofilm production and metallo beta-lactamase production were observed among Pseudomonas aeruginosa and Acinetobacter spp. However, no statistically significant association could be established between biofilm production and metallo beta-lactamase production.72.
Monick MM Mallampalli RK Bradford M McCoy D Gross TJ Flaherty DM Powers LS Cameron K Kelly S Merrill AH Hunninghake GW 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(1):123-135
Human alveolar macrophages are unique in that they have an extended life span in contrast to precursor monocytes. In evaluating the role of sphingolipids in alveolar macrophage survival, we found high levels of sphingosine, but not sphingosine-1-phosphate. Sphingosine is generated by the action of ceramidase(s) on ceramide, and alveolar macrophages have high constitutive levels of acid ceramidase mRNA, protein, and activity. The high levels of acid ceramidase were specific to alveolar macrophages, because there was little ceramidase protein or activity (or sphingosine) in monocytes from matching donors. In evaluating prolonged survival of alveolar macrophages, we observed a requirement for constitutive activity of ERK MAPK and the PI3K downstream effector Akt. Blocking acid ceramidase but not sphingosine kinase activity in alveolar macrophages led to decreased ERK and Akt activity and induction of cell death. These studies suggest an important role for sphingolipids in prolonging survival of human alveolar macrophages via distinct survival pathways. 相似文献
73.
Structure of uPAR, plasminogen, and sugar-binding sites of the 300 kDa mannose 6-phosphate receptor 下载免费PDF全文
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) mediates the intracellular transport of newly synthesized lysosomal enzymes containing mannose 6-phosphate on their N-linked oligosaccharides. In addition to its role in lysosome biogenesis, the CI-MPR interacts with a number of different extracellular ligands at the cell surface, including latent transforming growth factor-beta, insulin-like growth factor-II, plasminogen, and urokinase-type plasminogen activator receptor (uPAR), to regulate cell growth and motility. We have solved the crystal structure of the N-terminal 432 residues of the CI-MPR at 1.8 A resolution, which encompass three out of the 15 repetitive domains of its extracytoplasmic region. The three domains, which exhibit similar topology to each other and to the 46 kDa cation-dependent mannose 6-phosphate receptor, assemble into a compact structure with the uPAR/plasminogen and the carbohydrate-binding sites situated on opposite faces of the molecule. Knowledge of the arrangement of these three domains has allowed us to propose a model of the entire extracytoplasmic region of the CI-MPR that provides a context with which to envision the numerous binding interactions carried out by this multi-faceted receptor. 相似文献
74.
75.
Lebsack AD Gunzner J Wang B Pracitto R Schaffhauser H Santini A Aiyar J Bezverkov R Munoz B Liu W Venkatraman S 《Bioorganic & medicinal chemistry letters》2004,14(10):2463-2467
We have identified and synthesized a series of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to alpha 2 delta-1 subunit of voltage gated calcium channels. Structure-activity relationship studies directed toward improving the potency and physical properties of 2 lead to the discovery of 20 (IC(50)=15 nM) and (S)-22 (IC(50)=30 nM). A potent and selective radioligand, [(3)H]-(S)-22 was also synthesized to demonstrate that this ligand binds to the same site as gabapentin. 相似文献
76.
Márcio A. de Sousa Gabriela Rabaioli Rama Claucia F. Volken de Souza Camille E. Granada 《Biotechnology progress》2020,36(2):e2937
The genus Lactobacillus has been widely used in food industry as starter or adjunct culture due to its probiotic features. Its biotechnological features improve the spectrum of uses of lactobacilli, which can affect its applicability directly. In this sense, this literature review gathers information and discusses the biotechnological potential of technological/probiotic lactobacilli aiming to improve food quality and human health. The primary and secondary metabolism generates specific substances, such as organic acids, carbon dioxide, hydrogen peroxide, diacetyl, fatty acids, and bacteriocins, which are determinant due to their probiotic potential, antimicrobial activity, and the development of new food flavors. In order to become industrially and commercially attractive, it is necessary develop a large-scale process with lower production costs. 相似文献
77.
Biswajit Khatua Jeremy Van Vleet Biswa Pronab Choudhury Rama Chaudhry Chitra Mandal 《Molecular & cellular proteomics : MCP》2014,13(6):1412-1428
Pseudomonas aeruginosa (PA) is an environmentally ubiquitous, extracellular, opportunistic pathogen, associated with severe infections of immune-compromised host. We demonstrated earlier the presence of both α2,3- and α2,6-linked sialic acids (Sias) on PA (PA+Sias) and normal human serum is their source of Sias. PA+Sias showed decreased complement deposition and exhibited enhanced association with immune-cells through sialic acid binding immunoglobulin like lectins (Siglecs). Such Sias-siglec-9 interaction between PA+Sias and neutrophils helped to subvert host immunity. Additionally, PA+Sias showed more resistant to β-lactam antibiotics as reflected in their minimum inhibitory concentration required to inhibit the growth of 50% than PA−Sias. Accordingly, we have affinity purified sialoglycoproteins of PA+Sias. They were electrophoresed and identified by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight mass spectrometry analysis. Sequence study indicated the presence of a few α2,6-linked, α2,3-linked, and both α2,3- and α2,6-linked sialylated proteins in PA. The outer membrane porin protein D (OprD), a specialized channel-forming protein, responsible for uptake of β-lactam antibiotics, is one such identified sialoglycoprotein. Accordingly, sialylated (OprD+Sias) and non-sialylated (OprD−Sias) porin proteins were separately purified by using anion exchange chromatography. Sialylation of purified OprD+Sias was confirmed by several analytical and biochemical procedures. Profiling of glycan structures revealed three sialylated N-glycans and two sialylated O-glycans in OprD+Sias. In contrast, OprD−Sias exhibit only one sialylated N-glycans. OprD−Sias interacts with β-lactam antibiotics more than OprD+Sias as demonstrated by surface plasmon resonance study. Lyposome-swelling assay further exhibited that antibiotics have more capability to penetrate through OprD−Sias purified from four clinical isolates of PA. Taken together, it may be envisaged that sialic acids on OprD protein play important role toward the uptake of commonly used antibiotics in PA+Sias. This might be one of the new mechanisms of PA for β-lactam antibiotic uptake.Sialic acids (Sias)1 are nine carbon atom containing acidic residues characteristically found in the terminal position of glycoproteins and glycolipids (1–4). Structural diversity of sialic acids is because of the modification of one or more hydroxyl groups in various positions of the core structure by different groups like acetyl-, methyl-, sulfate-, lactyl-, or phosphate (1, 5–7). More than fifty derivatives of Sias has been reported both in vertebrate and invertebrate systems. It functions as ligand for various cellular communications and also act as masking element for glycoconjugates (8–12).Sialic acid binding immunoglobulins (Ig)-like lectins (siglecs) selectively expressed on the hematopoetic cells and interact with an array of linkage-specific Sias on a glycan structure express on the same cells or other cells (13). Siglecs can also recognize terminal sialylated glycoconjugates on several pathogens (14–16). After recognizing, they carry out various functions like internalization, attenuation of inflammation, restraining cellular activation along with inhibition of natural killer cell activation (17).Pseudomonas aeruginosa (PA) is a Gram-negative, rod-shaped bacterium. This human pathogen has remarkable capacity to cause diseases in immune compromised hosts. This colonizing microbial pathogen is responsible for infection in chronic cystic fibrosis, nosocomial infections; severe burn, transplantation, cancer, and AIDS and other immuno-supressed patients (18).We have reported earlier the presence of linkage-specific Sias on PA. Normal human serum (NHS) is possibly one of the sources of these Sias (19). PA utilizes these Sias to interact through siglecs present on the surface of different immune cells. PA+Sias showed enhanced association with neutrophils through α2,3-linked Sias-siglec-9 interaction which facilitated their survival by subverting innate immune function of host (20).The treatment of PA-infected patient depends upon the extent of the disease and the concerned organs. Conventional β-lactam, cephalosporins, and aminoglycosides group of antibiotics are most common for such treatment (21). β-lactam antibiotics inhibit cell wall synthesis by disrupting the synthesis of the peptidoglycan layer of bacterial cell walls (22). When PA showed resistant to β-lactam antibiotics, new generation of β-lactam with increased doses or other broad spectrum antibiotics like tetracyclines or fluoroquinolones are prescribed (23). PA isolates from intensive care unit (ICU) patients in general showed higher rates of β-lactam resistance among other hospitalized patients (24). The increasing frequency of resistance to ceftazidime, piperacillin, imipenem, fluoroquinolone, and aminoglycoside were 36.6%, 22.3%, 22.8%, 23.8%, and 17.8% respectively in PA (25).The outer membrane of Gram-negative bacteria is, in general, semipermeable through which hydrophilic molecules including antibiotics of below exclusion limit size (0.6 kDa) can pass through the channel-forming proteins generally called porins e.g. OprD, OprF, OprG etc. (26, 27). PA shows lower outer membrane permeability with respect to many other Gram-negative bacteria like Acinetobacter baumannii, Stenotrophomonas maltophilia, Burkholderia cepacia, hence the diffusion rate of β-lactam antibiotics is decreased (27).Additionally, PA uses MexA-MexB-OprM, MexC-MexD-OprJ, MexE-MexF-OprN, and MexX-MexY-OprM as efflux pumps along with important regulatory factors MexR/NalB, NfxB, NfxC/MexT, and MexZ respectively on their membrane to pump out undesirable chemicals, detergent and antibiotics (28–32). Other Gram-negative bacteria also uses similar types of efflux pumps for such purposes. Moreover, PA produces antibiotic-resistance genes by some mutation (33). Furthermore, β-lactamase and aminoglycoside-modifying enzymes produced by PA are capable of breaking down the antibiotics (34). Alternatively, these enzymes can directly modify the drug. Hence these antibiotics become functionally ineffective (27).The presence of lipopolysaccharides (LPS) containing O-specific polysaccharides with tri-saccharide repeats of 2-acetamido-2,6-dideoxy-d-glucose, 2-acetamido-2,6-dideoxy-d-galactose, and 5-acetamido-3,5,7,9-tetyradeoxy-7-[(R)-3-hydroxybutyramidol]-3-l-glycerol-l-manno-nonulosonic acid are known for PA serogroup O11 (35). The genes for key enzymes required for complex protein glycosylation are found in the genome of PA14 (36). Moreover, glycosylation in PA1244 has been reported in the form of an O-linked glycan in pilin (37). A cluster of seven genes known as the pel genes, encode proteins with similarity to components involved in polysaccharide biogenesis. Among these genes, PelF is a putative glycosyltransferase (GT) of the type IV glycosyltransferase (GT4) family (36). PA secreted sialidase in culture medium (38). Genome search reveals that PA14 has the sialidase gene, which may be responsible for cleaving sialic acids (39). PA1 also has sialic acid transporter gene, which possibly transport sialic acids inside the cells (Gene ID: 17688338, Source: http://www.ncbi.nlm.nih.gov/gene/17688338). Additionally, CMP-sialic acid transferase, which is responsible for converting sialic acids to CMP-sialic acid, was purified from PAO12 (40). This enzyme shows close similarity with the enzyme found in E. coli.However, PA being such a notorious organism, it might have many other different mechanisms to fight against antibiotics for their survival. Therefore, it is worthwhile to explore newer mechanism to understand how antibiotics penetrate inside this bacterium. Here we addressed the following questions. Does sialylation of glycoproteins demonstrated on PA play any role in the entry of antibiotics that might facilitate their survival within host?Accordingly, we have affinity purified a few sialoglycoproteins from PA. Sequence analysis identified twenty six α2,3- and α2,6-linked sialoglycoproteins. One such identified sialoglycoprotein is OprD porin protein. The presence of Sias on OprD was conclusively confirmed. We have demonstrated that Sias on OprD protein isolated four different clinical isolates hampered its interaction with β-lactam antibiotics. This might be one of the new mechanisms for β-lactam antibiotic resistance of PA and thereby facilitates their survival in host. 相似文献
78.
Vasudha Tandon Ruturajsinh
M. Vala Albert Chen Robert
L. Sah Hitendra
M. Patel Michael
C. Pirrung Sourav Banerjee 《Bioscience reports》2022,42(2)
Proteasome-addicted neoplastic malignancies present a considerable refractory and relapsed phenotype with patients exhibiting drug resistance and high mortality rates. To counter this global problem, novel proteasome-based therapies are being developed. In the current study, we extensively characterize TIR-199, a syrbactin-class proteasome inhibitor derived from a plant virulence factor of bacterium Pseudomonas syringae pv syringae. We report that TIR-199 is a potent constitutive and immunoproteasome inhibitor, capable of inducing cell death in multiple myeloma, triple-negative breast cancer, (TNBC) and non-small cell lung cancer lines. TIR-199 also effectively inhibits the proteasome in primary myeloma cells of patients, and bypasses the PSMB5 A49T+A50V bortezomib-resistant mutant. TIR-199 treatment leads to accumulation of canonical proteasome substrates in cells, it is specific, and does not inhibit 50 other enzymes tested in vitro. The drug exhibits synergistic cytotoxicity in combination with proteasome-activating kinase DYRK2 inhibitor LDN192960. Furthermore, low-doses of TIR-199 exhibits in vivo activity by delaying myeloma-mediated bone degeneration in a mouse xenograft model. Together, our data indicates that proteasome inhibitor TIR-199 could indeed be a promising next-generation drug within the repertoire of proteasome-based therapeutics. 相似文献
79.
Cropping on jhum fallows in north-eartern India is predominantly done for one year in a jhum cycle. If second year cropping
is done, expanse of the forest land required for slashing and burning could be reduced significantly. We tested this hypothesis
in a young (6 yr) and an old (20 yr) jhum fallow. We also evaluated if the productivity during second year cropping could
be alleviated by auxiliary measures such as tilling the soil or application of fertilizers (chemical or farm-yard manure or
both in combination). The results demonstrate that the ecosystem productivity (total dry matter production) and economic yield
(rice grain production) decline with shortening of jhum cycle. Second year cropping causes a further decline in ecosystem
productivity in old jhum field, but not in young jhum field. Economic yield from second year cropping in its traditional form
(without any fertilizer treatment) is not much lower than that in the first year, and can be improved further by manuring
the soil. Tilling of soil improves neither ecosystem productivity nor economic yield. Different fertilization treatments respond
differently; while inorganic manuring enhances ecosystem productivity, a combination of inorganic and organic manuring improves
economic yield 相似文献
80.
Senescence Mutants of Saccharomyces Cerevisiae with a Defect in Telomere Replication Identify Three Additional Est Genes 总被引:10,自引:0,他引:10 下载免费PDF全文
The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cerevisiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity. 相似文献