首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   60篇
  2022年   3篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   12篇
  2013年   9篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   10篇
  2008年   16篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   9篇
  2000年   5篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   9篇
  1991年   3篇
  1990年   8篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1985年   5篇
  1984年   5篇
  1983年   9篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   10篇
  1978年   12篇
  1977年   5篇
  1976年   6篇
  1975年   6篇
  1974年   5篇
  1972年   4篇
  1971年   5篇
  1967年   2篇
  1961年   3篇
  1954年   3篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
51.
R Sheehy  G B Ralston 《Blut》1978,36(3):145-148
In two cases of hereditary spherocytosis that we have examined, spectrin was bound abnormally tightly to the erythrocyte membrane, and could not be released by low ionic strength dialysis. This type of behaviour occurs in normal red cells only after heating above 50 degrees C. It appears that some cases of spherocytosis may be due to the presence of a protein which is abnormally temperature sensitive.  相似文献   
52.
Studies on the turnover of mouse brain synaptosomal proteins   总被引:1,自引:1,他引:0  
(l) The half-lives of the proteins of various fractions of whole mouse brain increase with increasing insolubility; the supernatant and hypotonic-extractable proteins had half-lives of about 13 days, whereas the membrane proteins solubilized with Triton X-100 and SLS had half-lives of about 18 days. The proteins of the subfractions of synaptosomes had half-lives ranging from 15 to 19 days; those in the cytoplasm had a half-life of 18·3 days, in the membranes, about 17 days and in the synaptic vesicles, 15·6 days. (2) Although the half-life of the synaptic vesicles was not significantly different from that of other synaptosomal subfractions, the vesicles exhibited a different protein pattern on acrylamide gels, an observation which implies that the proteins of the vesicles are qualitatively different from those of other synaptic membranes. (3) The uptake of labelled lysine into the cytoplasm of the synaptosomes of youg mice in vivo was very rapid. (4) The data derived from the relative specific radioactivities of synaptosomal fractions compared with their whole brain analogs support the contention that a sizeable fraction of the synaptosomal cytoplasmic protein was transported to the synapse by axoplasmic flow. The relative specific radioactivities of synaptosomal membrane and synaptic vesicle proteins rose much more quickly than the comparable activities for the cytoplasmic material, and the alternate possibility of synthesis in situ is discussed.  相似文献   
53.
The Ca2+- and Mg2+-stimulated ATPase activities present in low ionic strength extracts of erythrocyte membranes have been separated from each other. The Ca2+-ATPase appears to be associated with particulate meterial which could be sedimented by high-speed centrifugation. The pellet obtained was composed mainly of components 1, 2, 4.5, 5 and 7. A soluble protein from the band 3 region, known to be responsible for the Mg2+-ATPase activity, was not detected in this pellet.  相似文献   
54.
55.

Background

Methylmercury (CH3Hg+) toxicity is characterized by challenging conundrums: 1) “selenium (Se)-protective” effects, 2) undefined biochemical mechanism/s of toxicity, 3) brain-specific oxidative damage, 4) fetal vulnerability, and 5) its latency effect. The “protective effects of Se” against CH3Hg+ toxicity were first recognized >50?years ago, but awareness of Se's vital functions in the brain has transformed understanding of CH3Hg+ biochemical mechanisms. Mercury's affinity for Se is ~1 million times greater than its affinity for sulfur, revealing it as the primary target of CH3Hg+ toxicity.

Scope of review

This focused review examined research literature regarding distinctive characteristics of CH3Hg+ toxicity to identify Se-dependent aspects of its biochemical mechanisms and effects.

Conclusions

Research indicates that CH3Hg+ irreversibly inhibits the selenoenzymes that normally prevent/reverse oxidative damage in the brain. Unless supplemental Se is provided, consequences increase as CH3Hg+ approaches/exceeds equimolar stoichiometries with Se, thus forming HgSe and inducing a conditioned Se deficiency. As the biochemical target of CH3Hg+ toxicity, Se-physiology provides perspectives on the brain specificity of its oxidative damage, accentuated fetal vulnerability, and latency. This review reconsiders the concept that Se is a “tonic” that protects against CH3Hg+ toxicity and recognizes Se's role as Hg's molecular “target”. As the most potent intracellular nucleophile, the selenoenzyme inhibition paradigm has broad implications in toxicology, including resolution of conundrums of CH3Hg+ toxicity.

General significance

Mercury-dependent sequestration of selenium and the irreversible inhibition of selenoenzymes, especially those required to prevent and reverse oxidative damage in the brain, are primarily responsible for the characteristic effects of mercury toxicity.  相似文献   
56.
57.
58.
Amiloride does not alter NaCl avoidance in Fischer-344 rats   总被引:2,自引:2,他引:0  
Fischer-344 (F-344) rats differ from other common rat strains in that they fail to show any preference for NaCl at any concentration in two- bottle preference tests. Because 100 microM amiloride partially blocks the NaCl-evoked chorda tympani (CT) response in electrophysiological studies, we tested NaCl preference (0.068-0.273 M) in F-344 rats with and without 100 microM amiloride solution as the solvent. A third group was tested with unadulterated NaCl solutions following CT transection. Amiloride had no significant effect on the NaCl preference-aversion function, whereas CT transection significantly reduced NaCl avoidance. These results suggest that the amiloride-sensitive component of the NaCl response is not necessary for F-344 rats to display avoidance of NaCl, but the entire CT input is.   相似文献   
59.
60.
While Entamoeba histolytica remains a globally important pathogen, it is dramatically understudied. The tractability of E. histolytica has historically been limited, which is largely due to challenging features of its genome. To enable forward genetics, we constructed and validated the first genome-wide E. histolytica RNAi knockdown mutant library. This library allows for Illumina deep sequencing analysis for quantitative identification of mutants that are enriched or depleted after selection. We developed a novel analysis pipeline to precisely define and quantify gene fragments. We used the library to perform the first RNAi screen in E. histolytica and identified slow growth (SG) mutants. Among genes targeted in SG mutants, many had annotated functions consistent with roles in cellular growth or metabolic pathways. Some targeted genes were annotated as hypothetical or lacked annotated domains, supporting the power of forward genetics in uncovering functional information that cannot be gleaned from databases. While the localization of neither of the proteins targeted in SG1 nor SG2 mutants could be predicted by sequence analysis, we showed experimentally that SG1 localized to the cytoplasm and cell surface, while SG2 localized to the cytoplasm. Overexpression of SG1 led to increased growth, while expression of a truncation mutant did not lead to increased growth, and thus aided in defining functional domains in this protein. Finally, in addition to establishing forward genetics, we uncovered new details of the unusual E. histolytica RNAi pathway. These studies dramatically improve the tractability of E. histolytica and open up the possibility of applying genetics to improve understanding of this important pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号