Females of many Old World primates produce conspicuous vocalizations in combination with copulations. Indirect evidence exists
that in Barbary macaques (Macaca sylvanus), the structure of these copulation calls is related to changes in reproductive hormone levels. However, the structure of
these calls does not vary significantly around the timing of ovulation when estrogen and progestogen levels show marked changes.
We here aimed to clarify this paradox by investigating how the steroid hormones estrogen and progesterone are related to changes
in the acoustic structure of copulation calls. We collected data on semi-free-ranging Barbary macaques in Gibraltar and at
La Forêt des Singes in Rocamadour, France. We determined estrogen and progestogen concentrations from fecal samples and combined
them with a fine-grained structural analysis of female copulation calls (N = 775 calls of 11 females). Our analysis indicates a time lag of 3 d between changes in fecal hormone levels, adjusted for
the excretion lag time, and in the acoustic structure of copulation calls. Specifically, we found that estrogen increased
the duration and frequency of the calls, whereas progestogen had an antagonistic effect. Importantly, however, variation in
acoustic variables did not track short-term changes such as the peak in estrogen occurring around the timing of ovulation.
Taken together, our results help to explain why female Barbary macaque copulation calls are related to changes in hormone
levels but fail to indicate the fertile phase. 相似文献
Recessively inherited natural and induced mutations in the barley Mlo gene confer durable broad-spectrum resistance against the powdery mildew pathogen, Blumeria graminis f.sp. hordei. Mlo codes for a member of a plant-specific family of polytopic integral membrane proteins with unknown biochemical activity.
Resistant barley mlo mutant alleles identify amino acid residues that are critical for Mlo function in the context of powdery mildew susceptibility. 相似文献
Increasing rates of Anthropocene biodiversity extinctions suggest a possible sixth mass extinction event. Conservation planners are seeking effective ways to protect species, hotspots of biodiversity, and dynamic ecosystems to reduce and eventually eliminate the degradation and loss of diversity at the scale of genes, species, and ecosystems. While well-established, adequately enforced protected areas (PAs) increase the likelihood of preserving species and habitats, traditional placement methods are frequently inadequate in protecting biodiversity most at risk. Consequently, the Key Biodiversity Area (KBA) Partnership developed a set of science-based criteria and thresholds that iteratively identify sites where biodiversity is most in need of protection. KBA methodology has been rarely applied in the marine realm, where data are often extremely limited. We tested the feasibility of KBA population metrics in the Greater Caribbean marine region using occurrence and population data and threat statuses for 1669 marine vertebrates. These data identified areas where site-specific conservation measures can effectively protect biodiversity. Using KBA criteria pertaining to threatened and irreplaceable biodiversity, we identified 90 geographically unique potential KBAs, 34 outside and 56 within existing PAs. These provide starting points for local conservation managers to verify that KBA thresholds are met and to delineate site boundaries. Significant data gaps, such as population sizes, life history characteristics, and extent of habitats, prevent the full application of the KBA criteria to data-poor marine species. Increasing the rate and scope of marine sampling programs and digital availability of occurrence datasets will improve identification and delineation of KBAs in the marine environment.
AbstractUnder in vitro culture conditions, plants may present physiological and anatomical disorders, which can interfere negatively after ex vitro transfer. The aim of this investigation was to analyze the impacts of natural ventilation and sucrose supply on the anatomy and physiology of Vriesea imperialis. Plants previously grown in vitro were transferred to culture medium containing 0, 15, 30 or 45?g L?1 sucrose. Three different culture container sealing systems were tested: lids with a green filter (81.35 gas exchanges per day), yellow filter (13.09 gas exchanges per day) or lids with a yellow filter covered with three layers of transparent polyvinylchloride (PVC) film (blocking fluent gas exchange). Sucrose concentrations influenced thickness, lignin and suberin deposition of exodermis cell wall. The modifications verified in leaves, such as higher density of stomata and trichome scales, showed that sucrose can induce osmotic stress in the plants. Photomixotrophic conditions, using containers with intermediate rate of gas exchange (yellow filter) and with 15–30?g L?1 sucrose, produced an improvement in the growth traits and did not induce anatomical and physiological disturbances. 相似文献
Physicochemical characteristics of corn stover pretreated by soaking in aqueous ammonia (SAA) and low-moisture anhydrous ammonia (LMAA) were compared and investigated. The glucan digestibility of the treated biomass reached 90 % (SAA) and 84 % (LMAA). The LMAA pretreatment enhanced the digestibility by cleaving cross-linkages between cell wall components, whereas the SAA pretreatment additionally improved the digestibility by efficiently removing a major portion of the lignin under mild reaction conditions without significant loss of carbohydrates. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) revealed the structural and chemical transformations of lignin during the pretreatments. Both pretreatments effectively cleaved ferulate cell wall cross-linking that is associated with the recalcitrance of grass lignocellulosics toward enzymatic saccharification. Extracted lignin from SAA pretreatment was extensively depolymerized but retained “native” character, as evidenced by the retention of β-ether linkages. 相似文献
Although the formation of β-amyloid (Aβ) deposits in the brain is a hallmark of Alzheimer disease (AD), the soluble oligomers rather than the mature amyloid fibrils most likely contribute to Aβ toxicity and neurodegeneration. Thus, the discovery of agents targeting soluble Aβ oligomers is highly desirable for early diagnosis prior to the manifestation of a clinical AD phenotype and also more effective therapies. We have previously reported that a novel 15-amino acid peptide (15-mer), isolated via phage display screening, targeted Aβ and attenuated its neurotoxicity (Taddei, K., Laws, S. M., Verdile, G., Munns, S., D''Costa, K., Harvey, A. R., Martins, I. J., Hill, F., Levy, E., Shaw, J. E., and Martins, R. N. (2010) Neurobiol. Aging 31, 203–214). The aim of the current study was to generate and biochemically characterize analogues of this peptide with improved stability and therapeutic potential. We demonstrated that a stable analogue of the 15-amino acid peptide (15M S.A.) retained the activity and potency of the parent peptide and demonstrated improved proteolytic resistance in vitro (stable to t = 300 min, c.f. t = 30 min for the parent peptide). This candidate reduced the formation of soluble Aβ42 oligomers, with the concurrent generation of non-toxic, insoluble aggregates measuring up to 25–30 nm diameter as determined by atomic force microscopy. The 15M S.A. candidate directly interacted with oligomeric Aβ42, as shown by coimmunoprecipitation and surface plasmon resonance/Biacore analysis, with an affinity in the low micromolar range. Furthermore, this peptide bound fibrillar Aβ42 and also stained plaques ex vivo in brain tissue from AD model mice. Given its multifaceted ability to target monomeric and aggregated Aβ42 species, this candidate holds promise for novel preclinical AD imaging and therapeutic strategies. 相似文献