首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6062篇
  免费   531篇
  国内免费   2篇
  6595篇
  2023年   22篇
  2022年   45篇
  2021年   74篇
  2020年   54篇
  2019年   59篇
  2018年   81篇
  2017年   78篇
  2016年   143篇
  2015年   260篇
  2014年   278篇
  2013年   325篇
  2012年   447篇
  2011年   417篇
  2010年   270篇
  2009年   246篇
  2008年   329篇
  2007年   357篇
  2006年   386篇
  2005年   350篇
  2004年   290篇
  2003年   311篇
  2002年   276篇
  2001年   102篇
  2000年   115篇
  1999年   103篇
  1998年   101篇
  1997年   62篇
  1996年   52篇
  1995年   54篇
  1994年   38篇
  1993年   45篇
  1992年   60篇
  1991年   73篇
  1990年   47篇
  1989年   45篇
  1988年   49篇
  1987年   49篇
  1986年   36篇
  1985年   40篇
  1984年   30篇
  1983年   39篇
  1982年   28篇
  1981年   26篇
  1979年   34篇
  1978年   19篇
  1977年   24篇
  1976年   22篇
  1975年   20篇
  1972年   21篇
  1970年   19篇
排序方式: 共有6595条查询结果,搜索用时 46 毫秒
101.
Cyanobacterial light-harvesting complexes, the phycobilisomes, are proteolytically degraded when the organisms are starved for combined nitrogen, a process referred to as chlorosis or bleaching. Gene nblA, present in all phycobilisome-containing organisms, encodes a protein of about 7 kDa that plays a key role in phycobilisome degradation. The mode of action of NblA in this degradation process is poorly understood. Here we presented the 1.8-A crystal structure of NblA from Anabaena sp. PCC 7120. In the crystal, NblA is present as a four-helix bundle formed by dimers, the basic structural units. By using pull-down assays with immobilized NblA and peptide scanning, we showed that NblA specifically binds to the alpha-subunits of phycocyanin and phycoerythrocyanin, the main building blocks of the phycobilisome rod structure. By site-directed mutagenesis, we identified amino acid residues in NblA that are involved in phycobilisome binding. The results provided evidence that NblA is directly involved in phycobilisome degradation, and the results allowed us to present a model that gives insight into the interaction of this small protein with the phycobilisomes.  相似文献   
102.
N-terminal acetylation of proteins is a widespread and highly conserved process. Aminoacylase 1 (ACY1; EC 3.5.14) is the most abundant of the aminoacylases, a class of enzymes involved in hydrolysis of N-acetylated proteins. Here, we present four children with genetic deficiency of ACY1. They were identified through organic acid analyses using gas chromatography-mass spectrometry, revealing increased urinary excretion of several N-acetylated amino acids, including the derivatives of methionine, glutamic acid, alanine, leucine, glycine, valine, and isoleucine. Nuclear magnetic resonance spectroscopy analysis of urine samples detected a distinct pattern of N-acetylated metabolites, consistent with ACY1 dysfunction. Functional analyses of patients' lymphoblasts demonstrated ACY1 deficiency. Mutation analysis uncovered recessive loss-of-function or missense ACY1 mutations in all four individuals affected. We conclude that ACY1 mutations in these children led to functional ACY1 deficiency and excretion of N-acetylated amino acids. Questions remain, however, as to the clinical significance of ACY1 deficiency. The ACY1-deficient individuals were ascertained through urine metabolic screening because of unspecific psychomotor delay (one subject), psychomotor delay with atrophy of the vermis and syringomyelia (one subject), marked muscular hypotonia (one subject), and follow-up for early treated biotinidase deficiency and normal clinical findings (one subject). Because ACY1 is evolutionarily conserved in fish, frog, mouse, and human and is expressed in the central nervous system (CNS) in human, a role in CNS function or development is conceivable but has yet to be demonstrated. Thus, at this point, we cannot state whether ACY1 deficiency has pathogenic significance with pleiotropic clinical expression or is simply a biochemical variant. Awareness of this new genetic entity may help both in delineating its clinical significance and in avoiding erroneous diagnoses.  相似文献   
103.
104.

Background

Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process.

Methodology/Principal Findings

We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion.

Conclusions/Significance

Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.  相似文献   
105.
106.
Apidaecin peptides from Apis mellifera hemolymph are believed to attack intracellular bacterial targets. Our in vivo results for apidaecins 1a and 1b confirm that bacterial activity is non-lytic, however, the manner in which these peptides pass through the cell membrane to exert this activity is unknown. These data are combined with fluorescence (dye leakage) and quartz crystal microbalance studies to investigate the membrane interaction for these two wildtype peptides. It was found that the peptides penetrate the membrane in a trans-membrane manner. The amount of peptide uptake by the membrane is proportional to the concentration of the peptide, however, this appears to be a dynamic equilibrium which can be almost completely reversed by addition of buffer medium. Interestingly, a small residual mass remains within the membrane and the amount of peptide remaining in the membrane is a function of the buffer-salt concentration viz. in high salt, the residual peptide mass remaining is small whereas at low salt concentration, a larger mass of peptide remains bound. These results support a direct membrane penetration mechanism by the wild type apidaecins 1a and 1b. In both cases the peptide–membrane interaction has a negligible effect on the membrane, although, in high salt a permanent change in the membrane does occur at the highest peptide concentration which does not recover following peptide removal. Stefania Piantavigna and Patricia Czihal contributed equally to this article.  相似文献   
107.
The introduction of noncanonical amino acids and biophysical probes into peptides and proteins, and total or segmental isotopic labelling has the potential to greatly aid the determination of protein structure, function and protein-protein interactions. To obtain a peptide as large as possible by solid-phase peptide synthesis, native chemical ligation was introduced to enable synthesis of proteins of up to 120 amino acids in length. After the discovery of inteins, with their self-splicing properties and their application in protein synthesis, the semisynthetic methodology, expressed protein ligation, was developed to circumvent size limitation problems. Today, diverse expression vectors are available that allow the production of N- and C-terminal fragments that are needed for ligation to produce large amounts and high purity protein(s) (protein alpha-thioesters and peptides or proteins with N-terminal Cys). Unfortunately, expressed protein ligation is still limited mainly by the requirement of a Cys residue. Of course, additional Cys residues can be introduced into the sequence by site directed mutagenesis or synthesis, however, those mutations may disturb protein structure and function. Recently, alternative ligation approaches have been developed that do not require Cys residues. Accordingly, it is theoretically possible to obtain each modified protein using ligation strategies.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号