首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   20篇
  国内免费   1篇
  305篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   5篇
  2015年   5篇
  2014年   11篇
  2013年   8篇
  2012年   14篇
  2011年   13篇
  2010年   13篇
  2009年   6篇
  2008年   8篇
  2007年   15篇
  2006年   15篇
  2005年   19篇
  2004年   8篇
  2003年   9篇
  2002年   8篇
  2001年   11篇
  2000年   9篇
  1999年   21篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1994年   9篇
  1993年   3篇
  1992年   10篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1947年   1篇
  1946年   1篇
  1944年   1篇
  1939年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
11.
The efficient expression of small to midsize polypeptides and small marginally stable proteins can be difficult. A new protein fusion system is developed to allow the expression of peptides and small proteins. The polypeptide of interest is linked via a Factor Xa cleavage sequence to the C-terminus of the N-terminal domain of the ribosomal protein L9 (NTL9). NTL9 is a small (56 residue) basic protein. The C-terminus of the protein is part of an alpha-helix which extends away from the globular structure thus additional domains can be fused without altering the fold of NTL9. NTL9 expresses at high levels, is extremely soluble, and remains fully folded over a wide temperature and pH range. The protein has a high net positive charge, facilitating purification of fusion proteins by ion exchange chromatography. NTL9 fusions can also be easily purified by reverse phase HPLC. As a test case we demonstrate the high level expression of a small, 36 residue, three helix bundle, the villin headpiece subdomain. This protein is widely used as a model system for folding studies and the development of a simple expression system should facilitate experimental studies of the subdomain. The yield of purified fusion protein is 70 mg/L of culture and the yield of purified villin headpiece subdomain is 24 mg/L of culture. We also demonstrate the use of the fusion system to express a smaller marginally folded peptide fragment of the villin headpiece domain.  相似文献   
12.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector‐borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
13.
McrBC specifically recognizes and cleaves methylated DNA in a reaction dependent on GTP hydrolysis. DNA cleavage requires at least two recognition sites that are optimally separated by 40-80 bp, but can be spaced as far as 3 kb apart. The nature of the communication between two recognition sites was analyzed on DNA substrates containing one or two recognition sites. DNA cleavage of circular DNA required only one methylated recognition site, whereas the linearized form of this substrate was not cleaved. However, the linearized substrate was cleaved if a Lac repressor was bound adjacent to the recognition site. These results suggest a model in which communication between two remote sites is accomplished by DNA translocation rather than looping. A mutant protein with defective GTPase activity cleaved substrates with closely spaced recognition sites, but not substrates where the sites were further apart. This indicates that McrBC translocates DNA in a reaction dependent on GTP hydrolysis. We suggest that DNA cleavage occurs by the encounter of two DNA-translocating McrBC complexes, or can be triggered by non-specific physical obstacles like the Lac repressor bound on the enzyme's path along DNA. Our results indicate that McrBC belongs to the general class of DNA "motor proteins", which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate along DNA.  相似文献   
14.
Luisi DL  Snow CD  Lin JJ  Hendsch ZS  Tidor B  Raleigh DP 《Biochemistry》2003,42(23):7050-7060
Experimental and theoretical double-mutant cycles have been used to investigate a salt bridge in the N-terminal domain of the protein L9. Aspartic acid 23 is the only acidic residue involved in a well-defined pairwise interaction, namely, a partially solvent-exposed salt bridge with the protonated N-terminus of the protein. Mutations were studied in which Asp 23 was substituted by alanine, asparagine, and nitrile alanine. Interactions with the N-terminus were probed by comparisons between proteins with a protonated and acetylated N-terminus. The mutants were all folded, and the structures were unchanged from wild type as judged by CD and 2-D NMR. The coupling free energy between the N-terminus and the side chain of Asp 23 measured through double-mutant cycle analysis was favorable and ranged from -0.7 to -1.7 kcal mol(-)(1), depending upon the set of mutants used. This relatively large coupling free energy for a surface salt bridge likely arises from geometric factors that reduce the entropy loss associated with salt-bridge formation and from structural relaxation in the mutants. Coupling free energies computed with continuum electrostatic calculations agreed well with the experimental values when full account was taken of all potential interactions, particularly those involving Asp 23 and the acetylated N-terminus as well as interactions with solvent. The measured and calculated coupling free energy decreased only slightly when the salt concentration was increased from 100 to 750 mM NaCl. The calculations suggest that the coupling free energy between D23 and the N-terminus measured through the experimental double-mutant cycle analysis is significantly smaller than the actual interaction free energy between the groups in the wild-type structure because of the inapplicability of assumptions frequently used to interpret double-mutant cycles.  相似文献   
15.
16.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   
17.
Tang Y  Goger MJ  Raleigh DP 《Biochemistry》2006,45(22):6940-6946
The villin headpiece subdomain (HP36) is the smallest naturally occurring protein that folds cooperatively. The protein folds on a microsecond time scale. Its small size and very rapid folding have made it a popular target for biophysical studies of protein folding. Temperature-dependent one-dimensional (1D) NMR studies of the full-length protein together with CD and 1D NMR studies of the 21-residue peptide fragment (HP21) derived from HP36 have shown that there is significant structure in the unfolded state of HP36 and have demonstrated that HP21 is a good model of these interactions. Here, we characterized the model peptide HP21 in detail by two-dimensional NMR. Strongly upfield shifted C(alpha) protons, the magnitude of the 3J(NH,alpha) coupling constants, and the pattern of backbone-backbone and backbone-side chain NOEs indicate that the ensemble of structures populated by HP21 contains alpha-helical structure and native as well as non-native hydrophobic contacts. The hydrogen-bonded secondary structure inferred from the NOEs is, however, not sufficient to confer significant protection against amide H-D exchange. These studies indicate that there is significant secondary structure and hydrophobic clustering in the unfolded state of HP36. The implications for the folding of HP36 are discussed.  相似文献   
18.
Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.  相似文献   
19.
Polymorphic Admixture Typing in Human Ethnic Populations   总被引:1,自引:4,他引:1       下载免费PDF全文
A panel of 257 RFLP loci was selected on the basis of high heterozygosity in Caucasian DNA surveys and equivalent spacing throughout the human genome. Probes from each locus were used in a Southern blot survey of allele frequency distribution for four human ethnic groups: Caucasian, African American, Asian (Chinese), and American Indian (Cheyenne). Nearly all RFLP loci were polymorphic in each group, albeit with a broad range of differing allele frequencies (δ). The distribution of frequency differences (δ values) was used for three purposes: (1) to provide estimates for genetic distance (differentiation) among these ethnic groups, (2) to revisit with a large data set the proportion of human genetic variation attributable to differentiation within ethnic groups, and (3) to identify loci with high δ values between recently admixed populations of use in mapping by admixture linkage disequilibrium (MALD). Although most markers display significant allele frequency differences between ethnic groups, the overall genetic distances between ethnic groups were small (.066–.098), and <10% of the measured overall molecular genetic diversity in these human samples can be attributed to “racial” differentiation. The median δ values for pairwise comparisons between groups fell between .15 and .20, permitting identification of highly informative RFLP loci for MALD disease association studies.  相似文献   
20.
Aim Bergmann's rule, the tendency for body size to be positively correlated with latitude, is widely accepted but the mechanisms behind the patterns are still debated. Bergmann's originally conceived mechanism was based on heat conservation; other proposed mechanisms invoke phylogeny, migration distance and resource seasonality. With the goal of examining these mechanisms, we quantified morphological variation across the breeding range of a Neotropical migratory songbird, the cerulean warbler (Dendroica cerulea). Location Deciduous forests of eastern North America. Methods We sampled nine cerulean warbler populations, spanning the species’ breeding range. We captured 156 males using targeted playback and model presentation, and included 127 adult males in our analyses of morphological variation. We used an information‐theoretical approach to identify climatic variables associated with geographical variation in body size. Results Cerulean warbler body size adheres to Bergmann's rule: individuals in northern populations are larger than those in southern populations. Variation in body size is best explained by variation in dry and wet‐bulb temperature and actual evapotranspiration. Main conclusions Adherence to Bergmann's rule by the cerulean warbler appears to be linked to thermodynamics (heat conservation in the north, evaporative cooling in the south) and resource seasonality. Multiple selection pressures can interact to generate a single axis of morphological geographical variation, and even subtle fluctuations in climatic variables can exert significant selection pressures. We suggest that the influence of selection pressures on migrants might be enhanced by migratory connectivity, providing further support for the important role played by this phenomenon in the ecology, evolution and population dynamics of migratory songbirds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号