首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2445篇
  免费   138篇
  国内免费   2篇
  2585篇
  2023年   22篇
  2022年   27篇
  2021年   79篇
  2020年   50篇
  2019年   55篇
  2018年   69篇
  2017年   66篇
  2016年   82篇
  2015年   104篇
  2014年   132篇
  2013年   200篇
  2012年   213篇
  2011年   188篇
  2010年   147篇
  2009年   100篇
  2008年   132篇
  2007年   114篇
  2006年   98篇
  2005年   121篇
  2004年   101篇
  2003年   74篇
  2002年   67篇
  2001年   28篇
  2000年   16篇
  1999年   31篇
  1998年   14篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   15篇
  1993年   5篇
  1992年   14篇
  1991年   8篇
  1990年   12篇
  1989年   12篇
  1988年   11篇
  1987年   6篇
  1986年   12篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   10篇
  1981年   13篇
  1980年   16篇
  1979年   13篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1969年   6篇
排序方式: 共有2585条查询结果,搜索用时 15 毫秒
101.
102.
Onosma echioides Linn (Boraginaceae) is the most frequently used curative herb widely used for kidney obstruction, sciatic pain, and gout. The present study was designed to investigate the therapeutic effects of n-hexane bark extract of O. echioides (OE) L. root in vivo against Streptozotocin-induced diabetic neuropathy in SD rats. For in vivo activity, the experiment was categorized into five different groups (n = 5). Group-I was considered as nondiabetic/normal control (NC) treated with 0.5% carboxymethyl cellulose (CMC), Group II as diabetic control, Group-III, IV, and V served as diabetic treated with OE 50, OE 100, and pregabalin at a dose of 50, 100, and 10 mg/kg body weight, orally, respectively. Body weight, blood glucose, oral glucose tolerance test, behavioral studies (motor coordination test, thermal hyperalgesia, cold allodynia, locomotor activity, oxidative biomarkers (thio barbituric acid reactive substances [TBARS], superoxide dismutase [SOD], glutathione [GSH], and catalase), and histopathology of the sciatic nerve were performed. Treatment with OE showed a dose-dependent increase in neuroprotective activity by improving the myelination and decreasing the axonal swelling of nerve fibers. The verdicts of behavioral activities showed a remarkable effect on animals after the treatment of extract and standard drug pregabalin. In conclusion, our findings supported the traditional application of OE and explored its importance in the management of diabetic neuropathy. Additional clinical experiments may provide novel therapeutic drugs for diabetes and its complications.  相似文献   
103.
Cell suspension cultures of red spruce (Picea rubens Sarg.) were selected to study the effects of cadmium (Cd) and zinc (Zn) on phytochelatins (PCs) and related metabolites after 24 h exposure. The PC2 and its precursor, γ-glutamylcysteine (γ-EC) increased two to fourfold with Cd concentrations ranging from 12.5 to 200 μM as compared to the control. However, Zn-treated cells showed a less than twofold increase in γ-EC and PC2 levels as compared to the control even at the highest concentration of 800 μM. In addition, unidentified higher chain PCs were also found in both the Cd and Zn treated cells and they increased significantly with increasing concentrations of Cd and Zn. The cellular ratio of PC2 : Cd or Zn content clearly indicated that Cd (with ratios ranging from 0.131 to 0.546) is a more effective inducer of PC2 synthesis/accumulation than Zn (with ratios ranging from 0.032 to 0.102) in red spruce cells. A marginal decrease in glutathione (GSH) was observed in both Cd and Zn treated cells. However, the GSH precursor, cysteine, declined twofold with all Cd concentrations while the decrease with Zn was 1.5–2-fold only at the higher treatment concentrations of Zn as compared to control. In addition, changes in other free amino acids, polyamines, and inorganic ions were also studied. These results suggest that PCs and their biosynthetic intermediates play a significant role in red spruce cells protecting against Cd and Zn toxicity.  相似文献   
104.
105.
Vegetative insecticidal protein (Vip3A) is synthesized as an extracellular insecticidal toxin by certain strains of Bacillus thuringiensis. Vip3A is active against several lepidopteran pests of crops. Polyphagous pest, Spodoptera frugiperda, and its cell line Sf21 are sensitive for lyses to Vip3A. Screening of cDNA library prepared from Sf21 cells through yeast two-hybrid system with Vip3A as bait identified ribosomal protein S2 as a toxicity-mediating interacting partner protein. The Vip3A-ribosomal-S2 protein interaction was validated by in vitro pulldown assays and by RNA interference-induced knockdown experiments. Knockdown of expression of S2 protein in Sf21 cells resulted in reduced toxicity of the Vip3A protein. These observations were further extended to adult fifth-instar larvae of Spodoptera litura. Knockdown of S2 expression by injecting corresponding double-stranded RNA resulted in reduced mortality of larvae to Vip3A toxin. Intracellular visualization of S2 protein and Vip3A through confocal microscopy revealed their interaction and localization in cytoplasm and surface of Sf21 cells.Insecticidal proteins produced by strains of Bacillus thuringiensis can broadly be classified into two major categories based on their site of accumulation. Category I consist of proteins that are deposited as crystals in sporangia and are referred to as insecticidal crystalline proteins (ICPs). The second category consists of recently described group of insecticidal proteins, called vegetative insecticidal proteins (8). These proteins are synthesized during the vegetative growth of Bacillus cells and are secreted into the culture medium. Irrespective of the site of accumulation of insecticidal proteins, their ingestion by susceptible insect larvae leads to disruption and lysis of epithelial tissue from the midgut, resulting in larval death (12). The mechanism of lysis of gut epithelial tissue by ICPs has been investigated in detail in several insects (16). Ingestion of ICPs triggers a sequence of biochemical cascade that involves its solubilization and subsequent activation by gut proteases. The activated toxin interacts with specific receptors located at the midgut epithelial tissue. In this sequence of events, the interaction with the receptor is the most significant event since subsequent to interaction, pore formation is initialized, and that leads to lysis of epithelial cells. The identification and characterization of receptors from various insect larvae has led to the identification of following molecules as receptor to ICPs, such as cadherinlike protein (21), glycosyl phosphatidylinositol (GPI)-anchored aminopeptidase N (APN) (1, 9, 11, 17, 19, 20), a GPI-anchored alkaline phosphatase (10, 14), and a 270-kDa glycoconjugate (see references 2, 7, 9, and 16 and references therein for an extensive list of receptors). In addition, certain glycopeptides have been identified as lysis-initiating receptor molecules. Although there is extensive information about the receptor-toxin interaction for ICPs, negligible work has been done toward the identification of receptors to vegetative insecticidal proteins. The ultrastructural changes induced at the midgut epithelial tissue, upon ingestion of ICPs or Vip3As, are common (12). Both ICPs and Vip3As interact at the epithelial layer of midgut, enlarging the affected cells due to osmotic imbalance and eventually causing lysis. In spite of inflicting nearly identical structural damage, the interacting receptor for the Vip3A is not identical (12). In fact, the receptor to Vip3As has not yet been characterized.Our group has been working on the identification, cloning, and evaluation of vegetative insecticidal proteins from strains of B. thuringiensis held in our collection. We have characterized the Vip3A (EMBL accession no. Y17158) class of protein and evaluated its toxicity profile (2, 8, 18). Vip3A is active against larvae of Spodoptera litura, among several other lepidopteran pests. In a parallel series of experiments, we identified APN as a receptor to the B. thuringiensis protein Cry1C in S. litura. The heterologously expressed APN did not interact with Vip3A, suggesting that Vip3A toxicity in this insect is not through interaction with APN (1). Our preliminary results on the toxicity of Vip3A revealed that purified insecticidal protein could lyse Sf21 cells, suggesting the presence of receptors in the insect cell line. In the present study, we identified the Vip3A interacting protein in Sf21 cells and the larvae of S. litura. The specificity of the interaction has been examined by a combination of ex vivo and in vitro assays. These assays identified ribosomal S2 protein as the interacting partner of Vip3A. The functional significance of S2-Vip3A protein interaction was examined by monitoring the reduction in Vip3A toxicity in Sf21 cells and larvae of S. litura by the RNA interference-induced knockdown of S2 protein. The results of these experiments are discussed in the context of colocalization of the S2-Vip3A protein interacting complex by confocal microscopy.  相似文献   
106.
An essential aspect of the treatment of patients with cardiovascular disease is the use of anticoagulant and antiplatelet agents for the prevention of further ischaemic events and vascular death resulting from thrombosis. Aspirin and heparin have been the standard therapy for the management of such conditions to date. Recently, numerous more potent platelet inhibitors together with anticoagulant agents have been developed and tested in randomized clinical trials. This article reviews the current state of the art of antiplatelet and anticoagulant therapy in light of its potential clinical efficacy. It then focuses on the usages of these agents in order to improve the performance of clinical devices such as balloon catheters, coronary stents, and femoropopliteal bypass grafting and extra corporeal circuits for cardiopulmonary bypass. The article then goes on to look at the usage of these agents more specifically heparin, heparan, hirudin, and coumarin in the development of more biocompatible scaffolds for tissue engineering.  相似文献   
107.

Background

Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.

Methodology/Principal Findings

We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.

Conclusions/Significance

Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.  相似文献   
108.
The lead serum and glucocorticoid-related kinase 1 (SGK1) inhibitors 4-(5-phenyl-1H-pyrrolo[2,3-b]pyridin-3-yl)benzoic acid (1) and {4-[5-(2-naphthalenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]phenyl}acetic acid (2) suffer from low DNAUC values in rat, due in part to formation and excretion of glucuronic acid conjugates. These PK/glucuronidation issues were addressed either by incorporating a substituent on the 3-phenyl ring ortho to the key carboxylate functionality of 1 or by substituting on the group in between the carboxylate and phenyl ring of 2. Three of these analogs have been identified as having good SGK1 inhibition potency and have DNAUC values suitable for in vivo testing.  相似文献   
109.
Enzymes are central to the biology of many pesticides, influencing their modes of action, environmental fates and mechanisms of target species resistance. Since the introduction of synthetic xenobiotic pesticides, enzymes responsible for pesticide turnover have evolved rapidly, in both the target organisms and incidentally exposed biota. Such enzymes are a source of significant biotechnological potential and form the basis of several bioremediation strategies intended to reduce the environmental impacts of pesticide residues. This review describes examples of enzymes possessing the major activities employed in the bioremediation of pesticide residues, and some of the strategies by which they are employed. In addition, several examples of specific achievements in enzyme engineering are considered, highlighting the growing trend in tailoring enzymatic activity to a specific biotechnologically relevant function.  相似文献   
110.
α-mannosidase from Erythrina indica seeds is a Zn2+ dependent glycoprotein with 8.6% carbohydrate. The enzyme has a temperature optimum of 50 °C and energy of activation calculated from Arrhenius plot was found to be 23 kJ mol− 1. N-terminal sequence up to five amino acid residues was found to be DTQEN (Asp, Thr, Gln, Glu, and Asn). In chemical modification studies treatment of the enzyme with NBS led to total loss of enzyme activity and modification of a single tryptophan residue led to inactivation. Fluorescence studies over a pH range of 3–8 have shown tryptophan residue to be in highly hydrophobic environment and pH change did not bring about any appreciable change in its environment. Far-UV CD spectrum indicated predominance of α-helical structure in the enzyme. α-Mannosidase from E indica exhibits immunological identity with α-mannosidase from Canavalia ensiformis but not with the same enzyme from Glycine max and Cicer arietinum. Incubation of E. indica seed lectin with α-mannosidase resulted in 35% increase in its activity, while no such activation was observed for acid phosphatase from E. indica. Lectin induced activation of α-mannosidase could be completely abolished in presence of lactose, a sugar specific for lectin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号