首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1413篇
  免费   54篇
  1467篇
  2023年   10篇
  2022年   13篇
  2021年   38篇
  2020年   24篇
  2019年   31篇
  2018年   37篇
  2017年   29篇
  2016年   35篇
  2015年   55篇
  2014年   75篇
  2013年   103篇
  2012年   139篇
  2011年   114篇
  2010年   102篇
  2009年   70篇
  2008年   83篇
  2007年   83篇
  2006年   56篇
  2005年   73篇
  2004年   67篇
  2003年   49篇
  2002年   47篇
  2001年   11篇
  2000年   5篇
  1999年   15篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   5篇
  1994年   12篇
  1993年   4篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   7篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有1467条查询结果,搜索用时 15 毫秒
981.
Guizotia abyssinica seeds, a common bird feedstock, have been explored for the potential of biodiesel synthesis. The oil was extracted from the seeds by solvent extraction and composition of G. abyssinica oil was examined. The reaction parameters for biodiesel synthesis have been optimized. Temperature, oil: methanol ratio, catalyst type and catalyst concentration were found to have significant role on ester conversion. According to this study, the maximum yield of ester (98.7%) can be obtained with optimized sodium methoxide catalyst dosage (0.6%) at an operational temperature of 65 °C. Methyl ester of G. abyssinica oil was also studied for its oxidation stability and low temperature properties. Further, the synthesized product was blended in diesel at 5–20% ratios and evaluated for physico-chemical properties.  相似文献   
982.
Specific targeting of the protein complexes formed by the Polycomb group of proteins is critically required to maintain the inactive state of a group of developmentally regulated genes. Although the role of DNA binding proteins in this process has been well established, it is still not understood how these proteins target the Polycomb complexes specifically to their response elements. Here we show that the grainyhead gene, which encodes a DNA binding protein, interacts with one such Polycomb response element of the bithorax complex. Grainyhead binds to this element in vitro. Moreover, grainyhead interacts genetically with pleiohomeotic in a transgene-based, pairing-dependent silencing assay. Grainyhead also interacts with Pleiohomeotic in vitro, which facilitates the binding of both proteins to their respective target DNAs. Such interactions between two DNA binding proteins could provide the basis for the cooperative assembly of a nucleoprotein complex formed in vitro. Based on these results and the available data, we propose that the role of DNA binding proteins in Polycomb group-dependent silencing could be described by a model very similar to that of an enhanceosome, wherein the unique arrangement of protein-protein interaction modules exposed by the cooperatively interacting DNA binding proteins provides targeting specificity.  相似文献   
983.
Nitrilase and its application as a 'green' catalyst   总被引:1,自引:0,他引:1  
Hydrolase-catalyzed reactions have been widely applied in organic synthesis. Nitrilases are an important class of hydrolase that converts naturally occurring, as well as xenobiotically derived, nitriles to the corresponding carboxylic acids and ammonia. Because of their inherent enantio- and regioselectivities and other benefits, nitrilases are attractive as 'green', mild, and selective catalysts for setting stereogenic centers in fine-chemical synthesis and enantiospecific synthesis of a variety of carboxylic acid derivatives. In this review, the literature has been surveyed to provide a comprehensive coverage of the application of nitrilases in organic synthesis. Literature has also been cited to describe the isolation and/or characterization of nitrilases and related enzymes.  相似文献   
984.

Background  

A fundamental unsolved problem in psychophysical detection experiments is in discriminating guesses from the correct responses. This paper proposes a coherent solution to this problem by presenting a novel classification method that compares biomechanical and psychological responses.  相似文献   
985.
Hox genes are necessary for proper morphogenesis and organization of various body structures along the anterior-posterior body axis. These genes exist in clusters and their expression pattern follows spatial and temporal co-linearity with respect to their genomic organization. This colinearity is conserved during evolution and is thought to be constrained by the regulatory mechanisms that involve higher order chromatin structure. Earlier studies, primarily in Drosophila, have illustrated the role of chromatin-mediated regulatory processes, which include chromatin domain boundaries that separate the domains of distinct regulatory features. In the mouse HoxD complex, Evx2 and Hoxd13 are located ~ 9 kb apart but have clearly distinguishable temporal and spatial expression patterns. Here, we report the characterization of a chromatin domain boundary element from the Evx2-Hoxd13 region that functions in Drosophila as well as in mammalian cells. We show that the Evx2-Hoxd13 region has sequences conserved across vertebrate species including a GA repeat motif and that the Evx2-Hoxd13 boundary activity in Drosophila is dependent on GAGA factor that binds to the GA repeat motif. These results show that Hox genes are regulated by chromatin mediated mechanisms and highlight the early origin and functional conservation of such chromatin elements.  相似文献   
986.
Various 2,3′-anhydro analogs of 5-substituted 1-(2-deoxy-β-d-lyxofuranosyl)uracils (1015) and a related 1-(3-O-mesyl-2-deoxy-β-d-lyxofuranosyl) pyrimidine nucleoside analog (18) have been synthesized for evaluation as a new class of potential anti-HBV agents. The compounds 10, 12, and 15 demonstrated most potent anti-HBV activities against duck HBV (DHBV) and human HBV with EC50 values in the range of 2.5–10 and 5–10 μg/mL, respectively, at non-toxic concentrations (CC50 = >200 μg/mL). The nucleoside 18 also demonstrated significant anti-HBV activity against DHBV with an EC50 value of 2.5 μg/mL, however, it was less active against HBV in 2.2.15 cells (EC50 = >10 μg/mL).  相似文献   
987.
A novel series of AKT inhibitors containing 2,3,5-trisubstituted pyridines with novel azaindazoles as hinge binding elements are described. Among these, the 4,7-diazaindazole compound 2c has improved drug-like properties and kinase selectivity than those of indazole 1, and displays greater than 80% inhibition of GSK3β phosphorylation in a BT474 tumor xenograft model in mice.  相似文献   
988.
The DedA family genes are found in most bacterial genomes. Two of these proteins are Escherichia coli YqjA and YghB, predicted inner membrane proteins of unknown function sharing 61% amino acid identity. The E. coli single deletion mutants are largely without phenotype, but the double mutant (BC202; ΔyqjA::Tetr ΔyghB::Kanr) is characterized by incomplete cell division, temperature sensitivity, and altered phospholipid levels (K. Thompkins et al., J. Bacteriol. 190:4489-4500, 2008). In this report, we have better characterized the cell division chaining defect of BC202. Fluorescence recovery after photobleaching indicates that 58% of the cells in chains are compartmentalized by at least a cytoplasmic membrane. Green fluorescent protein fusions to the cell division proteins FtsZ, ZipA, FtsI, FtsL, and FtsQ are correctly localized to new septation sites in BC202. Periplasmic amidases AmiC and AmiA, secreted by the twin arginine transport (Tat) pathway, are localized to the cytoplasm in BC202. Overexpression of AmiA, AmiC, or AmiB, a periplasmic amidase secreted via the general secretory pathway, restores normal cell division but does not suppress the temperature sensitivity of BC202, indicating that YghB and YqjA may play additional roles in cellular physiology. Strikingly, overexpression of the Tat export machinery (TatABC) results in normal cell division and growth at elevated temperatures. These data collectively suggest that the twin arginine pathway functions inefficiently in BC202, likely due to the altered levels of membrane phospholipids in this mutant. These results underscore the importance of membrane composition in the proper function of the Tat protein export pathway.Roughly 25 to 30% of the genes in sequenced genomes are predicted to encode integral membrane proteins (12). The functions of many of these genes, even in a well-studied organism such as Escherichia coli, remain unknown. We have reported on the functional redundancy of two highly conserved and related E. coli inner membrane proteins, YqjA and YghB (40). These proteins belong to a large family (commonly called the DedA family) found widespread in most sequenced genomes. yghB and yqjA encode predicted inner membrane proteins with multiple membrane-spanning domains and 61% amino acid identity. In addition, E. coli contains three other genes predicted to encode proteins with significant similarity to YqjA and YghB (YabI, YohD, and DedA; amino acid BLAST E value of <1 × 10−6) and two other proteins with lower degrees of similarity (YdjX and YdjZ). Currently, there are >1,000 genes in the NCBI protein database annotated as either belonging to this family or possessing significant amino acid identity to E. coli DedA/YghB/YqjA (protein BLAST E values of <0.02). No member of this family has a known function, nor is it known whether they possess common functions across phylogenetic groups.Individually, yghB and yqjA are nonessential genes, as each single deletion mutant grows normally (2). However, BC202, an E. coli strain with targeted deletions of both yqjA and yghB, does not grow above 42°C and displays a dramatic cell division phenotype by forming chains of cells when grown at the permissive temperature of 30°C. Phase-contrast and scanning electron microscopy analysis of BC202 suggests that mutants can begin septation but are blocked at a later step in constriction (40). The cause of this phenotype is unclear.BC202 also has alterations in membrane phospholipid composition (40). While BC202 is capable of synthesizing all classes of phospholipids at all growth temperatures, it is depleted of phosphatidylethanolamine (PE), with elevated levels of the acidic phospholipids phosphatidylglycerol (PG) and cardiolipin (CL). In some respects, BC202 resembles phosphatidylserine synthase deletion mutants, such as AD90 (pss93::Kanr), which produces no membrane PE (14). Mutants deficient in PE are viable, but they require divalent cations for growth (14) and display cell division abnormalities (28, 33). Likewise, normal growth and cell division are restored to BC202 when LB growth medium is supplemented with millimolar concentrations of divalent cations (40). Unlike many mutants defective in cell wall synthesis, BC202 is not hypersensitive to detergents or antibiotics, indicating the presence of an intact outer membrane when grown at the permissive temperature.BC202, therefore, displays several phenotypes: a block at an apparent late stage of cell division, temperature sensitivity, and an imbalance in membrane phospholipid composition. To better understand the functions of YghB and YqjA, we have hypothesized two roles for these genes that are not mutually exclusive to explain the phenotypes of BC202. First, YqjA/YghB may play direct roles in cell division. The phospholipid phenotype may be a consequence secondary to the primary cell division defect in this scenario. Second, YqjA/YghB may play a direct role in efficient PE synthesis or controlling membrane phospholipid composition. The cell division phenotype may be a secondary consequence of the lipid imbalance. Here, we have better characterized the cell division phenotype of BC202 by using green fluorescent protein (GFP) fusions of cell division proteins and fluorescence recovery after photobleaching (FRAP) analysis. We find that while most of the cell division proteins are correctly localized to new septal rings, the periplasmic amidase AmiC is not localized to the septal ring as was reported previously (5), and this may be responsible for the observed cell division phenotype of BC202. AmiC is found mostly in the cytoplasmic compartment in BC202, as is AmiA, both of which are exported to the periplasm by the twin arginine pathway (5). The cell division defect of BC202 can be corrected by overexpression of periplasmic amidases or the TatABC operon, collectively suggesting that the Tat pathway functions inefficiently in BC202.  相似文献   
989.
Tc24-C4, a modified recombinant flagellar calcium-binding protein of Trypanosoma cruzi, is under development as a therapeutic subunit vaccine candidate to prevent or delay progression of chronic Chagasic cardiomyopathy. When combined with Toll-like receptor agonists, Tc24-C4 immunization reduces parasitemia, parasites in cardiac tissue, and cardiac fibrosis and inflammation in animal models. To support further research on the vaccine candidate and its mechanism of action, murine monoclonal antibodies (mAbs) against Tc24-C4 were generated. Here, we report new findings made with mAb Tc24-C4/884 that detects Tc24-WT and Tc24-C4, as well as native Tc24 in T. cruzi on ELISA, western blots, and different imaging techniques. Surprisingly, detection of Tc24 by Tc24-C/884 in fixed T. cruzi trypomastigotes required permeabilization of the parasite, revealing that Tc24 is not exposed on the surface of T. cruzi, making a direct role of antibodies in the induced protection after Tc24-C4 immunization less likely. We further observed that after immunostaining T. cruzi–infected cells with mAb Tc24-C4/884, the expression of Tc24 decreases significantly when T. cruzi trypomastigotes enter host cells and transform into amastigotes. However, Tc24 is then upregulated in association with parasite flagellar growth linked to re-transformation into the trypomastigote form, prior to host cellular escape. These observations are discussed in the context of potential mechanisms of vaccine immunity.  相似文献   
990.
Assisted reproductive techniques (ART) have now been extensively incorporated in the management of infertile couples. But even after rapid methodological and technological advances the success rates of these procedures have been below expectations. This has led to development of many sperm preparation protocols to obtain an ideal semen sample for artificial reproduction. Sperm apoptosis has been heavily linked to failures in reproductive techniques. One of the earliest changes shown by apoptotic spermatozoa is externalization of phosphatidyl serine. Magnetic activated cell sorting (MACS) is a novel sperm preparation technique that separates apoptotic and non-apoptotic spermatozoa based on the expression of phosphatidylserine. This has led to the incorporation of MACS as a sperm preparation technique. The review highlights the principle and mechanism of this novel technique and enumerates its advantages as a sperm preparation technique. Its utility in ART as an efficient tool for sperm recovery and its application in cryopreservation of semen samples is also explained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号