首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   54篇
  1455篇
  2023年   10篇
  2022年   13篇
  2021年   38篇
  2020年   24篇
  2019年   31篇
  2018年   37篇
  2017年   29篇
  2016年   35篇
  2015年   55篇
  2014年   75篇
  2013年   103篇
  2012年   138篇
  2011年   112篇
  2010年   102篇
  2009年   69篇
  2008年   80篇
  2007年   81篇
  2006年   55篇
  2005年   73篇
  2004年   65篇
  2003年   49篇
  2002年   47篇
  2001年   11篇
  2000年   5篇
  1999年   15篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   5篇
  1994年   12篇
  1993年   4篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   7篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有1455条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
105.
Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar polyamines and free amino acids (putative stress-protection compounds), chlorophyll (a key photosystem component), and sapwood area (a proxy for foliar biomass), for trees in Ca-addition (CaSiO3 added) and Ca-depleted (reference) watersheds at the Hubbard Brook Experimental Forest (NH, USA). Ca-addition increased concentrations of the amino acids alanine and γ-aminobutyric acid (GABA) and the polyamines putrescine (Put) and spermidine (Spd) in November, and Put in February relative to foliage from the reference watershed. Consistent with increased stress protection, foliage from the Ca-addition watershed had higher total chlorophyll and chlorophyll a concentrations in February than foliage from the reference watershed. In contrast, foliage from the reference watershed had significantly lower glutamic acid (Glu) and higher alanine (Ala) concentrations in February than foliage from the Ca-addition watershed. Imbalances in Ala:Glu have been attributed to cold sensitivity or damage in other species. In addition to concentration-based differences in foliar compounds, trees from the Ca-addition watershed had higher estimated levels of foliar biomass than trees from the reference watershed. Our findings suggest that Ca-addition increased the stress tolerance and productive capacity of red spruce foliage during the cold season, and resulted in greater crown mass compared to trees growing on untreated soils.  相似文献   
106.
16-Dehydropregnenolone undergoes a smooth annulation with propan-1-amine and aromatic aldehydes. Several amine derivatives of 16- dehydropregnenolone were synthesized and evaluated as inhibitors of DPP-IV. The structures of compounds were confirmed by 1H, 13C, NMR and mass spectral analysis. Among 17 compounds evaluated only five compounds 1, 9, 13, 15 and 16 demonstrated significant inhibition of DPP. This study suggest that introduction of appropriate substituents in the 16-dehydropregnenolone plays an important role in DPP-IV inhibitory activity.  相似文献   
107.
An efficient and economical method was developed for the synthesis of 3-substituted indoles by one-pot three-component coupling reaction of a substituted or unsubstituted benzaldehyde, N-methylaniline, and indole or N-methylindole using Yb(OTf)3-SiO2 as a catalyst. All the synthesized compounds were evaluated for inhibition of cell proliferation of human colon carcinoma (HT-29), human ovarian adenocarcinoma (SK-OV-3), and c-Src kinase activity. The 4-methylphenyl (4o and 4p) and 4-methoxyphenyl (4q) indole derivatives inhibited the cell proliferation of SK-OV-3 and HT-29 cells by 70-77% at a concentration of 50 μM. The unsubstituted phenyl (4d) and 3-nitrophenyl (4l) derivatives showed the inhibition of c-Src kinase with IC50 values of 50.6 and 58.3 μM, respectively.  相似文献   
108.
Structure stability/activity relationships (SXR) of a new class of N,N-dichloroamine compounds were explored to improve antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans while maintaining aqueous solution stability. This study identified a new class of solution-stable and topical antimicrobial agents. These agents are sulfone-stabilized and possess either a quaternary ammonium or sulfonate appendages as a water solubilizing group. Several unique challenges were confronted in the synthesis of these novel compounds which are highlighted in the discussion.  相似文献   
109.
A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ~2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号