首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   27篇
  2024年   2篇
  2023年   6篇
  2022年   3篇
  2021年   14篇
  2020年   9篇
  2019年   4篇
  2018年   14篇
  2017年   18篇
  2016年   17篇
  2015年   18篇
  2014年   28篇
  2013年   25篇
  2012年   37篇
  2011年   26篇
  2010年   14篇
  2009年   11篇
  2008年   21篇
  2007年   18篇
  2006年   12篇
  2005年   13篇
  2004年   23篇
  2003年   10篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
31.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
32.
Four species of the ant genus Ponera Latreille, 1804, are recorded from India. The present study reports one new species Ponera sikkimensis sp. n., a divergent population of Ponera indica Bharti & Wachkoo, 2012 and one new record, Ponera paedericera Zhou, 2001 from India. An identification key and distributions for the four known Indian species of Ponera based on the worker caste are provided.  相似文献   
33.
A soluble β-galactoside binding 14.5 kDa lectin was purified from the heart of Capra hircus. Its metal independent nature, preferential affinity for β-d-lactose and 90–94% homology with carbohydrate recognition domain of previously reported galectin-1 confirmed its inclusion in galectin-1 subfamily. The secondary structures of the deduced amino acid sequences were generally conserved with previously reported Gal-1. Exposure of the purified protein to varying temperature and pH, oxidant, thiol blocking reagents, denaturants and detergents resulted in significant changes in UV (ultraviolet), fluorescence, CD (circular dichroism) and FTIR (fourier transform infra red) spectra, thus strongly emphasizing the vitality of regular secondary structure of galectins for maintaining their active conformation. Bioinformatics studies corroborated the results obtained in wet lab. Our findings based on physico-chemical properties, oxidative inactivation and structural analysis of the goat heart galectin-1 suggests significant implications in potential biological and clinical applications.  相似文献   
34.
Abiotic stresses cause ROS accumulation, which is detrimental to plant growth. It is well known that acclimation of plants under mild or sub-lethal stress condition leads to development of resistance in plants to severe or lethal stress condition. The generation of ROS and subsequent oxidative damage during drought stress is well documented in the crop plants. However, the effect of drought acclimation treatment on ROS accumulation and lipid peroxidation has not been examined so far. In this study, the effect of water stress acclimation treatment on superoxide radical (O(2)(-z.rad;)) accumulation and membrane lipid peroxidation was studied in leaves and roots of wheat (Triticum aestivum) cv. C306. EPR quantification of superoxide radicals revealed that drought acclimation treatment led to 2-fold increase in superoxide radical accumulation in leaf and roots with no apparent membrane damage. However under subsequent severe water stress condition, the leaf and roots of non-acclimated plants accumulated significantly higher amount of superoxide radicals and showed higher membrane damage than that of acclimated plants. Thus, acclimation-induced restriction of superoxide radical accumulation is one of the cellular processes that confers enhanced water stress tolerance to the acclimated wheat seedlings.  相似文献   
35.
36.
37.
The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30% of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.  相似文献   
38.
39.
Arsenic (As) toxicity through induction of oxidative stress is a well-known mechanism of organ toxicity. To address this problem, buffalo epiphyseal proteins (BEP, at 100 μg/kg BW, i.p. for 28 days) were administered intraperitoneally to female Wistar rats exposed to As (100 ppm sodium arsenite via drinking water for 28 days). Arsenic exposure resulted in marked elevation in lipid peroxidation in brain, cardiac, and hepatic tissues, whereas significant (p < 0.05) adverse change in catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase, and reduced glutathione level were observed in cardiac, hepatic, and brain tissues of As-administered animals. BEP significantly (p < 0.05) counteracted all the adverse changes in antioxidant defense system brought about by As administration. Based on these results, we consider BEP as a potent antioxidant to be used for protection from arsenic-induced oxidative stress related damage of vital organs.  相似文献   
40.
Opiate-abusing individuals are in the top three risk-factor groups for HIV infection. In fact, almost 30% of HIV-infected individuals in the USA are reported to abuse opiates, highlighting the intersection of drugs of abuse with HIV/AIDS. Opiate-abusers are cognitively impaired and suffer from neurological dysfunctions that may lead to high-risk sexual behavior, poor adherence to antiretroviral regimens, and hepatitis-C virus infection. Collectively, these factors may contribute to accelerated HIV central nervous system (CNS) disease progression. To understand the role of morphine in disease progression, we sought to determine whether morphine influences HIV-induced inflammation or viral replication in human monocyte-derived macrophages (h-mdms) and MAGI cells infected with HIV and exposed to morphine. Chronic morphine exposure of HIV-infected h-mdms led to significant alterations in the secretion of IL-6 and monocyte chemoattractant protein 2 (MCP-2). Morphine enhanced IL-6 secretion and blunted MCP-2 secretion from HIV-infected h-mdms. However, exposure of HIV-infected h-mdms to morphine had no effect on tumor necrosis factor alpha secretion. Morphine had no effect on later stages of viral replication in HIV-infected h-mdms. Morphine had a potentially additive effect on the HIV-induced production of IL-6 and delayed HIV-induced MCP-2 production. These results suggest that in HIV-infected opiate-abusers, enhanced CNS inflammation might result even when HIV disease is controlled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号