首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   762篇
  免费   58篇
  2022年   4篇
  2021年   24篇
  2020年   5篇
  2019年   7篇
  2018年   16篇
  2017年   18篇
  2016年   21篇
  2015年   37篇
  2014年   51篇
  2013年   46篇
  2012年   70篇
  2011年   62篇
  2010年   32篇
  2009年   23篇
  2008年   30篇
  2007年   45篇
  2006年   36篇
  2005年   37篇
  2004年   39篇
  2003年   32篇
  2002年   26篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1991年   4篇
  1990年   7篇
  1989年   8篇
  1988年   7篇
  1987年   11篇
  1986年   7篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1972年   3篇
  1970年   3篇
排序方式: 共有820条查询结果,搜索用时 562 毫秒
21.
22.
BackgroundHookworms (Necator americanus and Ancylostoma duodenale) remain a major public health problem worldwide. Infections with hookworms (e.g., A. caninum, A. ceylanicum and A. braziliense) are also prevalent in dogs, but the role of dogs as a reservoir for zoonotic hookworm infections in humans needs to be further explored.Conclusions/SignificanceIn our study we regularly detected the presence of A. caninum DNA in the stool of humans. Whether this is the result of infection is currently unknown but it does warrant a closer look at dogs as a potential reservoir.  相似文献   
23.
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.  相似文献   
24.
Oligomerization of γ‐Synuclein is known to have implications for both neurodegeneration and cancer. Although it is known to co‐exist with the fibrillar deposits of α‐Synuclein (Lewy bodies), a hallmark in Parkinson's disease (PD), the effect of potential therapeutic modulators on the fibrillation pathway of γ‐Syn remains unexplored. By a combined use of various biophysical tools and cytotoxicity assays we demonstrate that the flavonoid epigallocatechin‐3‐gallate (EGCG) significantly suppresses γ‐Syn fibrillation by affecting its nucleation and binds with the unstructured, nucleus forming oligomers of γ‐Syn to modulate the pathway to form α‐helical containing higher‐order oligomers (~158 kDa and ~ 670 kDa) that are SDS‐resistant and conformationally restrained in nature. Seeding studies reveal that these oligomers although “on‐pathway” in nature, are kinetically retarded and rate‐limiting species that slows down fibril elongation. We observe that EGCG also disaggregates the protofibrils and mature γ‐Syn fibrils into similar SDS‐resistant oligomers. Steady‐state and time‐resolved fluorescence spectroscopy and isothermal titration calorimetry (ITC) reveal a weak non‐covalent interaction between EGCG and γ‐Syn with the dissociation constant in the mM range (Kd ~ 2–10 mM). Interestingly, while EGCG‐generated oligomers completely rescue the breast cancer (MCF‐7) cells from γ‐Syn toxicity, it reduces the viability of neuroblastoma (SH‐SY5Y) cells. However, the disaggregated oligomers of γ‐Syn are more toxic than the disaggregated fibrils for MCF‐7cells. These findings throw light on EGCG‐mediated modulation of γ‐Syn fibrillation and suggest that investigation on the effects of such modulators on γ‐Syn fibrillation is critical in identifying effective therapeutic strategies using small molecule modulators of synucleopathies.  相似文献   
25.
Janus kinase 3 (Jak3) is a non-receptor tyrosine kinase known to be expressed in hematopoietic cells. Studies of whole organ homogenates show that Jak3 is also expressed in the intestines of both human and mice. However, neither its expression nor its function has been defined in intestinal epithelial enterocytes. The present studies demonstrate that functional Jak3 is expressed in human intestinal enterocytes HT-29 Cl-19A and Caco-2 and plays an essential role in the intestinal epithelial wound repair process in response to interleukin 2 (IL-2). Exogenous IL-2 enhanced the wound repair of intestinal enterocytes in a dose-dependent manner. Activation by IL-2 led to rapid tyrosine phosphorylation and redistribution of Jak3. IL-2-stimulated redistribution of Jak3 was inhibited by the Jak3-specific inhibitor WHI-P131. IL-2 also induced Jak3-dependent redistribution of the actin cytoskeleton in migrating cells. In these cells Jak3 interacted with the intestinal and renal epithelial cell-specific cytoskeletal protein villin in an IL-2-dependent manner. Inhibition of Jak3 activation resulted in loss of tyrosine phosphorylation of villin and a significant decrease in wound repair of the intestinal epithelial cells. Previously, we had shown that tyrosine phosphorylation of villin is important for cytoskeletal remodeling and cell migration. The present study demonstrates a novel pathway in intestinal enterocytes in which IL-2 enhances intestinal wound repair through mechanisms involving Jak3 and its interactions with villin.  相似文献   
26.
27.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.  相似文献   
28.
Inhibition of dendritic cell (DC) maturity is an important immunomodulatory effect of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) and related analogs (D(3) analogs). The mechanisms underlying 1alpha,25(OH)(2)D(3)-mediated DC modulation are Vitamin D receptor (VDR)-dependent and likely involve direct or indirect regulation of multiple genes. Gene expression profiles of bone marrow-derived DCs (BMDCs) generated in the absence or presence of a potent D(3) analog were analyzed using microarray technology. Results for D(3) analog-conditioned DCs were also compared with glucocorticoid-conditioned BMDCs and with BMDCs conditioned with D(3) analog and glucocorticoid combined. Of approximately 12,000 gene products assayed, 52% were considered to have detectable expression in unconditioned BMDCs. Based on relative expression levels, 5.3% of these expressed genes were "silenced" or "suppressed" in D(3) analog-conditioned BMDCs and 2.1% were "augmented". In addition, 1.7% of gene products undetectable in control BMDCs were "induced" by D(3) analog. Functional grouping of modulated genes demonstrated important effects of D(3) analog on immunoreceptors, on chemokines and chemokine receptors, on growth factors/cytokines and related receptors, and on neuroendocrine hormones and related receptors. Many of these gene products were unaffected or differently regulated by glucocorticoid suggesting specific VDR-mediated regulatory effects. Confirmation of microarray analysis results for two differentially regulated chemokines (MIP-1alpha and RANTES) was obtained by RT-PCR and ELISA. The methodology provides novel insights into DC gene regulation by 1alpha,25(OH)(2)D(3) agonists.  相似文献   
29.
Cell-based delivery of therapeutic viruses has potential advantages over systemic viral administration, including attenuated neutralization and improved viral targeting. One of the exciting new areas of investigation is the potential ability of endothelial-lineage cells to deliver genes to the areas of neovascularization. In the present study, we compared two types of endothelial-lineage cells [outgrowth endothelial cells (OECs) and culture-modified mononuclear cells (CMMCs), also known as "endothelial progenitor cells"] for their ability to be infected with adenovirus and to home to the areas of neovascularization. Both cell types were isolated from peripheral blood of healthy human donors and expanded in culture. We demonstrate that OECs are more infectable and home better to tumors expressing VEGF on systemic administration. Furthermore, we used an adenoviral/retroviral chimeric system to convert OECs to retrovirus-producing cells. When injected systemically into tumor-bearing mice, OECs retain their ability to produce retrovirus and infect surrounding tumor cells. Our data demonstrate that OECs could be efficient carriers for viral delivery to areas of tumor neovascularization.  相似文献   
30.

Background  

Site-directed mutagenesis is an efficient method to alter the structure and function of genes. Here we report a rapid and efficient megaprimer-based polymerase chain reaction (PCR) mutagenesis strategy that by-passes any intermediate purification of DNA between two rounds of PCR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号