首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   58篇
  1011篇
  2023年   5篇
  2022年   19篇
  2021年   30篇
  2020年   11篇
  2019年   19篇
  2018年   24篇
  2017年   25篇
  2016年   32篇
  2015年   53篇
  2014年   64篇
  2013年   82篇
  2012年   80篇
  2011年   75篇
  2010年   39篇
  2009年   38篇
  2008年   42篇
  2007年   54篇
  2006年   43篇
  2005年   40篇
  2004年   41篇
  2003年   33篇
  2002年   32篇
  2001年   9篇
  2000年   3篇
  1999年   6篇
  1998年   9篇
  1997年   5篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   2篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1975年   3篇
  1973年   2篇
  1971年   2篇
  1957年   1篇
排序方式: 共有1011条查询结果,搜索用时 15 毫秒
81.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
82.

Background

Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results

Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.

Conclusions

The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
  相似文献   
83.
84.
Toll-like receptors (TLRs) activate a potent immunostimulatory response. There is clear evidence that overactivation of TLRs leads to infectious and inflammatory diseases. Recent biochemical studies have shown that the membrane-bound form of ST2 (ST2L), a member of the Toll-like/IL-1 receptor superfamily, negatively regulates MyD88-dependent TLR signaling pathways by sequestrating the adapters MyD88 and Mal (TIRAP). Specifically, ST2L attenuates the recruitment of Mal and MyD88 adapters to their receptors through its intracellular TIR domain. Thus, ST2L is a potent molecule that acts as a key regulator of endotoxin tolerance and modulates innate immunity. So far, the inhibitory mechanism of ST2L at the molecular level remains elusive. To develop a working hypothesis for the interactions between ST2L, TLRs (TLR1, 2, 4, and 6), and adapter molecules (MyD88 and Mal), we constructed three-dimensional models of the TIR domains of TLR4, 6, Mal, and ST2L based on homology modeling. Since the crystal structures of the TIR domains of TLR1, 2 as well as the NMR solution structure of MyD88 are known, we utilized these structures in our analysis. The TIR domains of TLR1, 2, 4, 6, MyD88, Mal and ST2L were subjected to molecular dynamics (MD) simulations in an explicit solvent environment. The refined structures obtained from the MD simulations were subsequently used in molecular docking studies to probe for potential sites of interactions. Through protein-protein docking analysis, models of the essential complexes involved in TLR2 and 4 signaling and ST2L inhibiting processes were developed. Our results suggest that ST2L may exert its inhibitory effect by blocking the molecular interface of Mal and MyD88 adapters mainly through its BB-loop region. Our predicted oligomeric signaling models may provide a basis for the understanding of the assembly process of TIR domain interactions, which has thus far proven to be difficult via in vivo studies.  相似文献   
85.
Adenosine-5’-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of “HSP18-ATP” interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts.  相似文献   
86.
The central role of 1α,25-dihydroxyvitamin D3 in the regulation of calcium balance is well established. By increasing the absorption of calcium in the intestine and the reabsorption of filtered calcium in the kidney tubule, the hormone maintains an appropriate calcium balance. The cellular mechanisms that underlie the increase in calcium transport in epithelial cells in response to 1α,25-dihydroxyvitamin D3 are beginning to be defined. These events include an increase in the movement of calcium across the apical membrane of the cell, an increase in the movement of calcium across the cell, and an increase in the extrusion of calcium at the basolateral portion of the cell. In this Prospects article, I will discuss the nature of the various processes and proteins involved in transcellular calcium movement, and I will attempt to highlight various future areas of research.  相似文献   
87.
In search of selective carbonic anhydrase (CA) IX inhibitors endowed with apoptotic inducing properties, we designed and synthesised two subsets of 4- and 3-(5-aryl-(4-phenylsulphonyl)-1H-1,2,3-triazol-1-yl)benzenesulphonamides. All compounds were assayed for human carbonic anhydrase (hCA) isoforms I, II, IV, and IX inhibition. Isoforms hCA I and hCA IV were weakly inhibited by most of the synthesised compounds. Many four-substituted benzenesulphonamides displayed low nanomolar inhibition against isoform hCA II, unlike the three-substituted analogues. All target compounds exhibited good inhibition profile with KI values ranging from 16.4 to 66.0 nM against tumour-associated isoform hCA IX. Some selective and potent inhibitors of hCA IX were assayed for in vitro apoptotic induction in goat testicular cells. Compounds 10d and 10h showed interesting apoptotic induction potential. The present study may provide insights into a strategy for the design of novel anticancer agents based on hCA inhibitors endowed with apoptotic interference.  相似文献   
88.
89.
Summary A microassay was developed to study the rapid binding characteristics of murine macrophages activated by gamma interferon and muramyl dipeptide to adherent neoplastic or nonneoplastic target cells. The binding of tumor cells to both activated and nonactivated macrophages was time- and temperature-dependent, and independent of tumor cell type. Activated macrophages bound more tumor cells than nonactivated macrophages. The initial binding of macrophages to target cells did not necessarily lead to lysis. First, primed macrophages bound tumor cells but did not lyse them, and second, nonactivated macrophages bound nontumorigenic cells without subsequent lysis. The rapid binding assay described here could prove useful in investigating the recognition mechanism(s) between macrophages and tumor cells derived from solid primary and metastatic cancers.  相似文献   
90.
Cisplatin, doxorubicin and fluorouracil (5-FU), drugs belonging to different chemical classes, have been extensively used for chemotherapy of various cancers. Despite extensive investigations into their hepatotoxicity, there is very limited information on their effects on the structure and ultra-structure of liver cells in vivo. Here, we demonstrate for the first time, the effects of these three anticancer drugs on rat liver toxicity using both light and electron microscopy. Light microscopic observations revealed that higher doses of cisplatin and doxorubicin caused massive hepatotoxicity compared to 5-FU treatment, including dissolution of hepatic cords, focal inflammation and necrotic tissues. Interestingly, low doses also exhibited abnormal changes, including periportal fibrosis, degeneration of hepatic cords and increased apoptosis. These changes were confirmed at ultrastructural level, including vesiculated rough endoplasmic reticulum and atrophied mitochondria with ill-differentiated cisternae, dense collection of macrophages and lymphocytes as well as fibrocytes with collagenous fibrils manifesting early sign of fibrosis, especially in response to cisplatin and doxorubicin -treatment. Our results provide in vivo evidence, at ultrastructural level, of direct hepatotoxicity caused by cisplatin, doxorubicin and 5-FU at both light and electron microscopi. These results can guide the design of appropriate treatment regimen to reduce the hepatotoxic effects of these anticancer drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号