首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   151篇
  国内免费   1篇
  2076篇
  2023年   9篇
  2022年   15篇
  2021年   40篇
  2020年   28篇
  2019年   28篇
  2018年   34篇
  2017年   29篇
  2016年   39篇
  2015年   72篇
  2014年   97篇
  2013年   104篇
  2012年   145篇
  2011年   131篇
  2010年   70篇
  2009年   75篇
  2008年   117篇
  2007年   115篇
  2006年   94篇
  2005年   85篇
  2004年   67篇
  2003年   48篇
  2002年   57篇
  2001年   42篇
  2000年   47篇
  1999年   37篇
  1998年   14篇
  1997年   11篇
  1996年   13篇
  1995年   16篇
  1994年   14篇
  1993年   13篇
  1992年   44篇
  1991年   24篇
  1990年   19篇
  1989年   29篇
  1988年   18篇
  1987年   21篇
  1986年   14篇
  1985年   16篇
  1984年   14篇
  1983年   14篇
  1980年   9篇
  1979年   16篇
  1977年   13篇
  1976年   11篇
  1975年   12篇
  1972年   8篇
  1971年   8篇
  1970年   8篇
  1969年   10篇
排序方式: 共有2076条查询结果,搜索用时 713 毫秒
61.
62.
Summary Extracellular recordings have been made from ganglion cells of the lemon shark retina: ON, OFF and ON-OFF units were recorded. Spectral sensitivity measurements under darkadapted conditions reveal a max of 519–522 nm. This may be due to two photoreceptor systems. A second class of ganglion cells was characterized as receiving input from a single 544 nm visual pigment system.  相似文献   
63.
64.

Background  

Cardiomyocyte contraction is initiated by influx of extracellular calcium through voltage-gated calcium channels. These oligomeric channels utilize auxiliary β subunits to chaperone the pore-forming α subunit to the plasma membrane, and to modulate channel electrophysiology [1]. Several β subunit family members are detected by RT-PCR in the embryonic heart. Null mutations in mouse β2, but not in the other three β family members, are embryonic lethal at E10.5 due to defects in cardiac contractility [2]. However, a drawback of the mouse model is that embryonic heart rhythm is difficult to study in live embryos due to their intra-uterine development. Moreover, phenotypes may be obscured by secondary effects of hypoxia. As a first step towards developing a model for contributions of β subunits to the onset of embryonic heart rhythm, we characterized the structure and expression of β2 subunits in zebrafish and other teleosts.  相似文献   
65.
Lipoarabinomannans (LAMs) and phosphatidylinositol mannosides (PIMs) are abundant glycolipids in the cell walls of all corynebacteria and mycobacteria, including the devastating human pathogen Mycobacterium tuberculosis. We have recently shown that M. smegmatis mutants of the lipoprotein-encoding lpqW gene have a profound defect in LAM biosynthesis. When these mutants are cultured in complex medium, spontaneous bypass mutants consistently evolve in which LAM biosynthesis is restored at the expense of polar PIM synthesis. Here we show that restoration of LAM biosynthesis in the lpqW mutant results from secondary mutations in the pimE gene. PimE is a mannosyltransferase involved in converting AcPIM4, a proposed branch point intermediate in the PIM and LAM biosynthetic pathways, to more polar PIMs. Mutations in pimE arose due to insertion of the mobile genetic element ISMsm1 and independent point mutations that were clustered in predicted extracytoplasmic loops of this polytopic membrane protein. Our findings provide the first strong evidence that LpqW is required to channel intermediates such as AcPIM4 into LAM synthesis and that loss of PimE function results in the accumulation of AcPIM4, bypassing the need for LpqW. These data highlight new mechanisms regulating the biosynthetic pathways of these essential cell wall components.  相似文献   
66.
The present study was designed to investigate the dose-dependent direct effect of corticosterone on adult rat Leydig cell steroidogenesis in vitro. Leydig cells were isolated from the testis of normal adult male albino rats, purified on discontinuous Percoll gradient and plated in culture plates/flasks overnight at 34 degrees C in a CO(2) incubator under 95% air and 5% CO(2) using DME/F12 medium containing 1% fetal bovine serum. After the attachment of cells, serum-containing medium was removed and cells were exposed to different doses (0, 50, 100, 200, 400, and 800 nM) of corticosterone using serum-free fresh medium for 24 h at 34 degrees C. At the end of exposure period, cells were utilized for assessment of the activities and mRNA expression of steroidogenic enzymes (cytochrome P(450) side chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, and cytochrome P(450) aromatase) and steroidogenic acute regulatory protein gene expression. Testosterone and estradiol production were also quantified. Activities of cytochrome P(450) side chain cleavage enzyme, 3beta- and 17beta-hydroxysteroid dehydrogenases were declined significantly in a dose-dependent manner after corticosterone exposure, while their mRNA expression were significantly reduced at higher doses of corticosterone exposure. The activity and mRNA expression of cytochrome P(450) aromatase registered a significant increase at 100 nM dose of corticosterone whereas at 200-800 nM doses both the activity as well as the mRNA levels was significantly reduced below the basal level. StAR protein gene expression was significantly inhibited by higher doses of corticosterone employed. At all doses employed, corticosterone significantly reduced the production of testosterone by Leydig cells, while estradiol level registered a significant increase at 50 and 100 nM doses but at higher doses, it registered a significant decrease when compared to basal level. It is concluded from the present in vitro study that the molecular mechanism by which corticosterone reduces the production of Leydig cell testosterone is by reducing the activities and mRNA expression of steroidogenic enzymes and steroidogenic acute regulatory protein.  相似文献   
67.
Concise, facile and efficient synthesis of 5′-O-triphosphates of 6-amino-5-nitro-3-(1′-β-D-2′-deoxyribofuranosyl)-2(1H)-pyridone (dZ) and its Watson-Crick complement 2-amino-8-(1′-β-D-2′-deoxyribofuranosyl)-imidazo[1,2a]-1,3,5-triazin-4(8H)-one (dP) is reported using a one-pot synthetic procedure.  相似文献   
68.
69.
70.
Creating designed zinc-finger nucleases with minimal cytotoxicity   总被引:1,自引:0,他引:1  
Zinc-finger nucleases (ZFNs) have emerged as powerful tools for delivering a targeted genomic double-strand break (DSB) to either stimulate local homologous recombination with investigator-provided donor DNA or induce gene mutations at the site of cleavage in the absence of a donor by nonhomologous end joining both in plant cells and in mammalian cells, including human cells. ZFNs are formed by fusing zinc-finger proteins to the nonspecific cleavage domain of the FokI restriction enzyme. ZFN-mediated gene targeting yields high gene modification efficiencies (> 10%) in a variety of cells and cell types by delivering a recombinogenic DSB to the targeted chromosomal locus, using two designed ZFNs. The mechanism of DSB by ZFNs requires (1) two ZFN monomers to bind to their adjacent cognate sites on DNA and (2) the FokI nuclease domains to dimerize to form the active catalytic center for the induction of the DSB. In the case of ZFNs fused to wild-type FokI cleavage domains, homodimers may also form; this could limit the efficacy and safety of ZFNs by inducing off-target cleavage. In this article, we report further refinements to obligate heterodimer variants of the FokI cleavage domain for the creation of custom ZFNs with minimal cellular toxicity. The efficacy and efficiency of the reengineered obligate heterodimer variants of the FokI cleavage domain were tested using the green fluorescent protein gene targeting reporter system. The three-finger and four-finger zinc-finger protein fusions to the REL_DKK pair among the newly generated FokI nuclease domain variants appear to eliminate or greatly reduce the toxicity of designer ZFNs to human cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号