首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   4篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   2篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
81.
The antiarrhythmic drug amiodarone was recently demonstrated to have novel broad range fungicidal activity. We provide evidence that amiodarone toxicity is mediated by disruption of Ca2+ homeostasis in Saccharomyces cerevisiae. In mutants lacking calcineurin and various Ca2+ transporters, including pumps (Pmr1 and Pmc1), channels (Cch1/Mid1 and Yvc1), and exchangers (Vcx1), amiodarone sensitivity correlates with cytoplasmic calcium overload. Measurements of cytosolic Ca2+ by aequorin luminescence demonstrate a biphasic response to amiodarone. An immediate and extensive calcium influx was observed that was dose-dependent and correlated with drug sensitivity. The second phase consisted of a sustained release of calcium from the vacuole via the calcium channel Yvc1 and was independent of extracellular Ca2+ entry. To uncover additional cellular pathways involved in amiodarone sensitivity, we conducted a genome-wide screen of nearly 5000 single-gene yeast deletion mutants. 36 yeast strains with amiodarone hypersensitivity were identified, including mutants in transporters (pmr1, pdr5, and vacuolar H+-ATPase), ergosterol biosynthesis (erg3, erg6, and erg24), intracellular trafficking (vps45 and rcy1), and signaling (ypk1 and ptc1). Of three mutants examined (vps45, vma3, and rcy1), all were found to have defective calcium homeostasis, supporting a correlation with amiodarone hypersensitivity. We show that low doses of amiodarone and an azole (miconazole, fluconazole) are strongly synergistic and exhibit potent fungicidal effects in combination. Our findings point to the potentially effective application of amiodarone as a novel antimycotic, particularly in combination with conventional antifungals.  相似文献   
82.
83.
Since thediscovery of the first intracellular Na+/H+exchanger in yeast, Nhx1, multiple homologs have been cloned andcharacterized in plants. Together, studies in these organismsdemonstrate that Nhx1 is located in the prevacuolar/vacuolarcompartment of cells where it sequesters Na+ into thevacuole, regulates intravesicular pH, and contributes to vacuolarbiogenesis. In contrast, the human homolog of Nhx1, Na+/H+ exchanger isoform 6 (NHE6), has beenreported to localize to mitochondria when transiently expressed as afusion with green fluorescent protein. This result warrantsreevaluation because it conflicts with predictions from phylogeneticanalyses. Here we demonstrate that when epitope-tagged NHE6 istransiently expressed in cultured mammalian cells, it does notcolocalize with mitochondrial markers. It also does not colocalize withmarkers of the lysosome, late endosome, trans-Golgi network,or Golgi cisternae. Rather, NHE6 is distributed in recyclingcompartments and transiently appears on the plasma membrane. Theseresults suggest that, like its homologs in yeast and plants, NHE6 is anendosomal Na+/H+ exchanger that may regulateintravesicular pH and volume and contribute to lysosomal biogenesis.

  相似文献   
84.
The beta- and gamma-crystallins are closely related lens proteins that are members of the betagamma-crystallin superfamily, which also include many non-lens members. Although beta-crystallin is known to be a calcium-binding protein, this property has not been reported in gamma-crystallin. We have studied the calcium binding properties of gamma-crystallin, and we show that it binds 4 mol eq of calcium with a dissociation constant of 90 microm. It also binds the calcium-mimic spectral probes, terbium and Stains-all. Calcium binding does not significantly influence protein secondary and tertiary structures. We present evidence that the Greek key crystallin fold is the site for calcium ion binding in gamma-crystallin. Peptides corresponding to Greek key motif of gamma-crystallin (42 residues) and their mutants were synthesized and studied for calcium binding. These peptides adopt beta-sheet conformation and form aggregates producing beta-sandwich. Our results with peptides show that, in Greek key motif, the amino acid adjacent to the conserved aromatic corner in the "a" strand and three amino acids of the "d" strand participate in calcium binding. We suggest that the betagamma superfamily represents a novel class of calcium-binding proteins with the Greek key betagamma-crystallin fold as potential calcium-binding sites. These results are of significance in understanding the mechanism of calcium homeostasis in the lens.  相似文献   
85.
86.
87.
88.
89.
A bacterium growing on pyrazine-2-carboxylate broth was isolated, purified and identified as a strain of Stenotrophomonas sp. based on polyphasic taxonomic analyses and designated as strain HCU1. 16S rRNA gene sequence of strain HCU1 showed 98.7% sequence similarity with the type strain of Stenotrophomonas maltophilia belonging to Gammaproteobacteria. Growth of strain HCU1 was demonstrated when pyrazine-2-carboxylate was used as a sole source of nitrogen. Ring reduction of pyrazine-2-carboxylate was shown as increase in absorbance at 268 nm and the reduced product was confirmed as 1,2,5,6-tetrahydropyrazine-2-carboxylate, while a ring opened product, 2-amino-2-hydroxy-3-(methylamino) propanoic acid (with a loss in carbon atom), indicated a reductive degradation of pyrazine-2-carboxylate by strain HCU1.  相似文献   
90.
High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and any possible deleterious effects on host cellular biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号