首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   4篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   2篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
61.
This article describes a microplate-based kinetic assay for mitochondrial NADH– and succinate–cytochrome c reductase activities in rat brain mitochondria. The assay reported here is based on the conventional spectrophotometric method and involves substrate-driven reduction of exogenous cytochrome c. Conditions regarding linearity with respect to time and protein concentration have been standardized. Furthermore, the methods were tested for inhibition of respective activities by specific inhibitors. The microplate format described here can be employed for rapid and simultaneous measurements of mitochondrial NADH– and succinate–cytochrome c reductase activities in a large number of samples.  相似文献   
62.
63.
64.
65.
66.
The ATPase subunits of the SWI/SNF chromatin remodeling enzymes, Brahma (BRM) and Brahma‐related gene 1 (BRG1), can induce cell cycle arrest in BRM and BRG1 deficient tumor cell lines, and mice heterozygous for Brg1 are pre‐disposed to breast tumors, implicating loss of BRG1 as a mechanism for unregulated cell proliferation. To test the hypothesis that loss of BRG1 can contribute to breast cancer, we utilized RNA interference to reduce the amounts of BRM or BRG1 protein in the nonmalignant mammary epithelial cell line, MCF‐10A. When grown in reconstituted basement membrane (rBM), these cells develop into acini that resemble the lobes of normal breast tissue. Contrary to expectations, knockdown of either BRM or BRG1 resulted in an inhibition of cell proliferation in monolayer cultures. This inhibition was strikingly enhanced in three‐dimensional rBM culture, although some BRM‐depleted cells were later able to resume proliferation. Cells did not arrest in any specific stage of the cell cycle; instead, the cell cycle length increased by approximately 50%. Thus, SWI/SNF ATPases promote cell cycle progression in nonmalignant mammary epithelial cells. J. Cell. Physiol. 223:667–678, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
67.
The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG_6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG_6394, solved to 2.9 Å resolution, revealed an α/β hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG_6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.  相似文献   
68.
MicroRNA attenuation of protein translation has emerged as an important regulator of mesenchymal cell differentiation into the osteoblast lineage. A compelling question is the extent to which miR biogenesis is obligatory for bone formation. Here we show conditional deletion of the Dicer enzyme in osteoprogenitors by Col1a1-Cre compromised fetal survival after E14.5. A mechanism was associated with the post-commitment stage of osteoblastogenesis, demonstrated by impaired ECM mineralization and reduced expression of mature osteoblast markers during differentiation of mesenchymal cells of ex vivo deleted Dicerc/c. In contrast, in vivo excision of Dicer by Osteocalcin-Cre in mature osteoblasts generated a viable mouse with a perinatal phenotype of delayed bone mineralization which was resolved by 1 month. However, a second phenotype of significantly increased bone mass developed by 2 months, which continued up to 8 months in long bones and vertebrae, but not calvariae. Cortical bone width and trabecular thickness in DicerΔoc/Δoc was twice that of Dicerc/c controls. Normal cell and tissue organization was observed. Expression of osteoblast and osteoclast markers demonstrated increased coupled activity of both cell types. We propose that Dicer generated miRs are essential for two periods of bone formation, to promote osteoblast differentiation before birth, and control bone accrual in the adult.  相似文献   
69.
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.  相似文献   
70.
Potato peels are waste by-product of the potato processing industry. They are reportedly rich in polyphenols. Our earlier studies have shown that extracts derived from potato peel (PPE) possess strong antioxidant activity in chemical and biological model systems in vitro, attributable to its polyphenolic content. The main objective of this study was to investigate the ability of PPE to protect erythrocytes against oxidative damage, in vitro. The protection rendered by PPE in erythrocytes was studied in terms of resistance to oxidative damage, morphological alterations as well as membrane structural alterations. The total polyphenolic content in PPE was found to be 3.93 mg/g powder. The major phenolic acids present in PPE were predominantly: gallic acid, caffeic acid, chlorogenic acid and protocatechuic acid. We chose the experimental prooxidant system: FeSO4 and ascorbic acid to induce lipid peroxidation in rat RBCs and human RBC membranes. PPE was found to inhibit lipid peroxidation with similar effectiveness in both the systems (about 80–85% inhibition by PPE at 2.5 mg/ml). While PPE per se did not cause any morphological alteration in the erythrocytes, under the experimental conditions, PPE significantly inhibited the H2O2-induced morphological alterations in rat RBCs as revealed by scanning electron microscopy. Further, PPE was found to offer significant protection to human erythrocyte membrane proteins from oxidative damage induced by ferrous–ascorbate. In conclusion, our results indicate that PPE is capable of protecting erythrocytes against oxidative damage probably by acting as a strong antioxidant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号