首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2075篇
  免费   96篇
  国内免费   1篇
  2172篇
  2024年   3篇
  2023年   17篇
  2022年   37篇
  2021年   63篇
  2020年   37篇
  2019年   43篇
  2018年   69篇
  2017年   43篇
  2016年   88篇
  2015年   92篇
  2014年   119篇
  2013年   165篇
  2012年   208篇
  2011年   196篇
  2010年   100篇
  2009年   104篇
  2008年   121篇
  2007年   118篇
  2006年   107篇
  2005年   78篇
  2004年   86篇
  2003年   62篇
  2002年   43篇
  2001年   26篇
  2000年   17篇
  1999年   14篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   5篇
  1989年   2篇
  1988年   9篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   7篇
  1981年   2篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1973年   4篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有2172条查询结果,搜索用时 15 毫秒
91.
Discovery of a number of novel and known human genes whose protein products bear striking similarity to two or more wheat gliadin domains raised the possibility that human intestinal non-HLA peptides homologous to celiac T-cell epitopes could play a role in non-HLA gene specification in celiac disease. Database searching of the entire human genome identified only 11 gut-expressed proteins with high T-cell epitope homology, particularly to the DQ2-gamma-I-gliadin epitope (i.e. TFIIA, FOXJ2 and IgD; mean BestFit quality score=40 versus random value of 24). Others were similar to DQ2-alpha-I-gliadin (i.e. PAX9; BestFit quality 46 versus 20 for random), or DQ2-alpha-II-gliadin (PHLDA1, known in mice as the T-cell death-associated gene; BestFit quality 43 versus 30 for random) epitopes. Among proteins previously screened for gliadin homology, noteworthy was achaete scute homologous protein (DQ2-alpha-I-gliadin; BestFit quality 41 versus 22 for random). With the exception of IgD, all are nuclear factors. Paying particular attention to the position of potential major histocompatibility complex (MHC) anchor residues, several were selected for testing in a DQ2-gamma-I-gliadin-restricted T-cell system. All native 10-mer peptides were inactive, even when deamidated, but V96F substitution of deamidated TFIIA amino acid residues 91-100 stimulated IL-2 release at levels exceeding the wheat gliadin positive control. Also active, but only slightly, was L1009F substitution of AIB3 amino acid residues 1004-1013. PlotSimilarity alignment of TFIIAs from eight species revealed subthreshold similarity score in the peptide region, in contrast to the highly conserved amino and carboxy termini. Molecular modeling of TFIIA[V96F] peptide points to an important juxtaposition of an upwardly projecting phenylalanine residue at peptide position 6 that likely contacts a receptor complementarity-determining region, and a downwardly projecting glutamic acid residue that fits into the shallow MHC P7 pocket. These observations tentatively point to a new multi-gene hypothesis for the initiation of celiac disease in which deamidated free human peptides with T-cell epitope homology (particularly those made more homologous by mutation) escape negative selection, as per deamidation of the HEL(48-62) peptide in the hen egg lysozyme model of autoimmunity. Deamidation following peptide release due to injury triggers inflammation, thereafter repeatedly provoked by dietary gliadin immunodominant peptides concentrated in the proximal small intestine.  相似文献   
92.
93.
EagI and NotI linking libraries were prepared in the lambda vector, EMBL5, from the mouse-human somatic cell hybrid 1W1LA4.9, which contains human chromosomes 11 and Xp as the only human component. Individual clones containing human DNA were isolated by their ability to hybridise with total human DNA and digested with SalI and EcoRI to identify the human insert size and single-copy fragments. The mean (± SD) insert sizes of the EagI and NotI clones were 18.3 ± 3.2 kb and 16.6 ± 3.6 kb, respectively. Regional localisation of 66 clones (52 EagI, 14 NotI) was achieved using a panel of 20 somatic cell hybrids that contained different overlapping deletions of chromosomes 11 or Xp. Thirty-nine clones (36 EagI, 3 NotI) were localised to chromosome 11; 17 of these were clustered in 11q13 and another nine were clustered in 11q14–q23.1. Twenty-seven clones (16 EagI, 11 NotI) were localised to Xp and 10 of these were clustered in Xp11. The 66 clones were assessed for seven different microsatellite repetitive sequences; restriction fragment length polymorphisms for five clones from 11q13 were also identified. These EagI and NotI clones, which supplement those previously mapped to chromosome 11 and Xp, should facilitate the generation of more detailed maps and the identification of genes that are associated with CpG-rich islands. Received: 27 December 1995 / Revised: 30 January 1996  相似文献   
94.
The study comprised of 60 Candida spp., 50 isolates from HIV and TB positive individuals (immunocompromised) and 10 isolates from non-HIV and -TB patients (immunocompetent). Among the 60 Candidal isolates, 83.3% were identified as C. albicans, 11.6% as C. glabrata and rest 5% as C. krusei. There is no study in production pattern of extracellular enzymes of Candida spp. isolated from HIV and TB patients in comparison with non-HIV and -TB patients in India. The comparison of phospholipase activities showed that there was a significant difference between the groups at (P = 0.001). The non-HIV and -TB groups of C. glabrata and C. krusei did not show detectable phospholipase activity when compared to the HIV and TB groups. The mean difference in the phospholipase activities of these two groups was significant (P = <0.001). Candida spp. of both the groups do not possess the ability to hydrolyze gelatin. All the strains possessed the ability to show alpha haemolysis. Even though it had shown alpha haemolysis, the significant difference in haemolytic activity was observed only in C. albicans (P = <0.001). None of the isolates from the two groups possessed the ability to hydrolyze gelatin. In the resistance profile of Candida spp., C. albicans of HIV and TB groups had shown resistance to fluconazole, Itraconazole, ketaconazole, nystatin but showed 100% sensitivity towards amphotericin-B. The isolates of C. krusei and C. glabrata showed no resistance to any of the drugs tested. In the case of, non-HIV and -TB patients the resistance pattern was low.  相似文献   
95.
The preparation of megaporous bodies, with potential applications in biotechnology, was attempted by following several strategies. As a first step, naive and robust scaffolds were produced by polymerization of selected monomers in the presence of a highly soluble cross‐linker agent. Ion‐exchange function was incorporated by particle embedding, direct chemical synthesis, or radiation‐induced grafting. The total ionic capacity of such systems was 1.5 mmol H+/g, 1.4 mmol H+/g, and 17 mmol H+/g, respectively. These values were in agreement with the ability to bind model proteins: observed dynamic binding capacity at 50% breakthrough was ?7.2 mg bovine serum albumin/g, ?7.4 hen egg‐white lysozyme (HEWL) mg/g, and ?108 HEWL mg/g. In the later case, total (static) binding capacity reached 220 mg/g. It was observed that the structure and size of the megapores remained unaffected by the grafting procedure which, however, allowed for the highest protein binding capacity. Lysozyme supported on grafted body showed extensive clarification activity against a Micrococcus lysodekticus suspension in the flow‐through mode, i.e., 90% destruction of suspended microbial cells was obtained with a residence time ≈ 18 min. Both protein capture and biocatalysis applications are conceivable with the 3D‐megaporous materials described in this work. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   
96.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   
97.
98.

Background

The availability of quality data to inform policy is essential to reduce maternal deaths. To characterize maternal deaths in settings without complete vital registration systems, we designed and assessed the inter-rater reliability of a tool to systematically extract data and characterize the events that precede a nationally representative sample of maternal deaths in India.

Method/Principal Findings

Of 1017 nationally representative pregnancy-related deaths, which occurred between 2001 and 2003, we randomly selected 105 reports. Two independent coders used the maternal data extraction tool (questions with coding guidelines) to collect information on antenatal care access, final pregnancy outcome; planned place of birth and care provider; community consultation, transport, admission, hospital referral; and verification of cause of death assignment. Kappa estimated inter-rater agreement was calculated and classified as poor (K≤0.4), moderate (K = 0.4-≤0.6), substantial (K = 0.6-≤0.8) and high (K>0.8) using the criteria from Landis & Koch. The data extraction tool had high agreement for gestational age, pregnancy outcome, transport, death en route and admission to hospital; substantial agreement for receipt of antenatal care, planned place of birth, readmission and referral to higher level hospital, and whether or not death occurred in the intrapartum period; moderate to substantial agreement for classification of deaths as direct or indirect obstetric deaths or incidental deaths; moderate agreement for classification of community healthcare consultation and total number of healthcare contacts; and poor agreement for the classification of deaths as sudden deaths and other/unknown cause of death. The ability of the tool to identify the most-responsible-person in labour varied from moderate agreement to high agreement.

Conclusions

This data extraction tool achieved good inter-rater reliability and can be used to collect data on events surrounding maternal deaths and for verification/improvement of underlying cause of death.  相似文献   
99.
The challenge of stabilization of small molecules and proteins has received considerable interest. The biological activity of small molecules can be lost as a consequence of chemical modifications, while protein activity may be lost due to chemical or structural degradation, such as a change in macromolecular conformation or aggregation. In these cases, stabilization is required to preserve therapeutic and bioactivity efficacy and safety. In addition to use in therapeutic applications, strategies to stabilize small molecules and proteins also have applications in industrial processes, diagnostics, and consumer products like food and cosmetics. Traditionally, therapeutic drug formulation efforts have focused on maintaining stability during product preparation and storage. However, with growing interest in the fields of encapsulation, tissue engineering, and controlled release drug delivery systems, new stabilization challenges are being addressed; the compounds or protein of interest must be stabilized during: (1) fabrication of the protein or small molecule-loaded carrier, (2) device storage, and (3) for the duration of intended release needs in vitro or in vivo. We review common mechanisms of compound degradation for small molecules and proteins during biomaterial preparation (including tissue engineering scaffolds and drug delivery systems), storage, and in vivo implantation. We also review the physical and chemical aspects of polymer-based stabilization approaches, with a particular focus on the stabilizing properties of silk fibroin biomaterials.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号