首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   18篇
  国内免费   2篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   19篇
  2020年   9篇
  2019年   11篇
  2018年   10篇
  2017年   6篇
  2016年   17篇
  2015年   9篇
  2014年   25篇
  2013年   42篇
  2012年   36篇
  2011年   35篇
  2010年   20篇
  2009年   11篇
  2008年   21篇
  2007年   18篇
  2006年   12篇
  2005年   9篇
  2004年   10篇
  2003年   17篇
  2002年   7篇
  2001年   10篇
  2000年   11篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   5篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有420条查询结果,搜索用时 640 毫秒
141.
The main aim of this study was to investigate the beneficial effects of hydro-alcoholic extract of Caralluma fimbriata (CFE) on the effects of high-fat diet feeding on insulin resistance and oxidative stress in Wistar rats. High-fat diet (60 % of fat) and CFE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 90 days. Feeding with high-fat diet resulted in the development of hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia and impaired insulin sensitivity (P?<?0.05). Administration of CFE to high-fat diet-fed rats for 90 days resulted in a significant improvement in plasma glucose, insulin, leptin, and triglycerides. Regarding liver antioxidant status, high-fat fed rats showed higher levels of lipid peroxidation, protein oxidation and lower GSH levels and lower activities of enzymatic antioxidants, while CFE treatment prevented all these observed abnormalities. In conclusion, intake of CFE may be beneficial for the suppression of high-fat diet-induced insulin resistance and oxidative stress.  相似文献   
142.
The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram.  相似文献   
143.
Geranylgeranylglyceryl phosphate synthase (GGGPS) family enzymes catalyse the formation of an ether bond between glycerol‐1‐phosphate and polyprenyl diphosphates. They are essential for the biosynthesis of archaeal membrane lipids, but also occur in bacterial species, albeit with unknown physiological function. It has been known that there exist two phylogenetic groups (I and II) of GGGPS family enzymes, but a comprehensive study has been missing. We therefore visualized the variability within the family by applying a sequence similarity network, and biochemically characterized 17 representative GGGPS family enzymes regarding their catalytic activities and substrate specificities. Moreover, we present the first crystal structures of group II archaeal and bacterial enzymes. Our analysis revealed that the previously uncharacterized bacterial enzymes from group II have GGGPS activity like the archaeal enzymes and differ from the bacterial group I enzymes that are heptaprenylglyceryl phosphate synthases. The length of the isoprenoid substrate is determined in group II GGGPS enzymes by ‘limiter residues’ that are different from those in group I enzymes, as shown by site‐directed mutagenesis. Most of the group II enzymes form hexamers. We could disrupt these hexamers to stable and catalytically active dimers by mutating a single amino acid that acts as an ‘aromatic anchor’.  相似文献   
144.
BACE1 is a key enzyme for amyloid-β (Aβ) production, and an attractive therapeutic target in Alzheimer's disease (AD). Here we report that BACE1 inhibitors have distinct effects on neuronal Aβ metabolism, inducing a unique pattern of secreted Aβ peptides, analyzed in cell media from amyloid precursor protein (APP) transfected cells and in cerebrospinal fluid (CSF) from dogs by immunoprecipitation-mass spectrometry, using several different BACE1 inhibitors. Besides the expected reductions in Aβ1-40 and Aβ1-42, treatment also changed the relative levels of several other Aβ isoforms. In particular Aβ1-34 decreased, while Aβ5-40 increased, and these changes were more sensitive to BACE1 inhibition than the changes in Aβ1-40 and Aβ1-42. The effects on Aβ5-40 indicate the presence of a BACE1 independent pathway of APP degradation. The described CSF Aβ pattern may be used as a pharmacodynamic fingerprint to detect biochemical effects of BACE1-therapies in clinical trials, which might accelerate development of novel therapies.  相似文献   
145.
β-1,3-Glucanases are abundant in plants and have been characterized from a wide range of species. They play key roles in cell division, trafficking of materials through plasmodesmata, in withstanding abiotic stresses and are involved in flower formation through to seed maturation. They also defend plants against fungal pathogens either alone or in association with chitinases and other antifungal proteins. They are grouped in the PR-2 family of pathogenesis-related (PR) proteins. Use of β-1,3-glucanase genes as transgenes in combination with other antifungal genes is a plausible strategy to develop durable resistance in crop plants against fungal pathogens. These genes, sourced from alfalfa, barley, soybean, tobacco, and wheat have been co-expressed along with other antifungal proteins, such as chitinases, peroxidases, thaumatin-like proteins and α-1-purothionin, in various crop plants with promising results that are discussed in this review.  相似文献   
146.
A direct detection of Escherichia coli genomic DNA using gold nanoprobes   总被引:1,自引:0,他引:1  

Background

Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata.

Results

Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells.

Conclusions

PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations.  相似文献   
147.
148.
The aluminum (III) complex [SalenAl(III)]Cl (1), (Salen=(R,R)-N,N'-bis[5-methyl-3-(4-methylpiperazinyl)-salicylidene]-1,2-diphenylethanediamine) has been synthesized and characterized by elemental analysis, FT-IR, (1)H and (13)C NMR measurements. The interaction of complex (1) with calf thymus (CT) DNA has been studied extensively by experimental techniques. Thermal denaturation study of DNA with (1) revealed the DeltaT(m) of 5+/-0.2 degrees C. Viscosity and steady-state fluorescence measurements showed that the complex cross-links DNA and the metal center is interacting with DNA during the cross-linking. Also, the phenyl ring in the complex may intercalate between the base pairs of the DNA during the cross-linking. Competitive binding study shows that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by the addition of the metal complex indicating that it displaces EB from its binding site in DNA and the apparent binding constant has been estimated to be (2.8+/-0.2)x10(5) M(-1). Further, time-resolved fluorescence experiments confirm the binding of (1) with DNA and its cross-linking nature. Aluminum ions shown to precipitate DNA completely above the pH 6.0, but no such precipitation was observed with complex (1). The DNA-DNA cross-linking mediated by (1) is further confirmed by gel electrophoresis.  相似文献   
149.
Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is ‘trans-stimulated’ by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.  相似文献   
150.
A highly arsenic-metabolizing bacterial strain was isolated from an agricultural field known for arsenic contamination near Munshiganj (Bangladesh). Based on 16S rRNA gene analysis, the strain was identified as Micrococcus luteus and designated as strain BPB1. Arsenate and arsenite minimal inhibitory concentrations of 650 mM and 7.5 mM, respectively, were observed for strain BPB1, slightly higher than the figures observed in its close relative M. luteus DSM 20030T. Such observations were consistent with the presence of arsenic-metabolizing genes in the genome of M. luteus. We describe this strain as having an MSH/Mrx-dependent class of arsenate reductase, and an arsenite transporter family in the ACR3(1) group. Besides an intracellular arsenic resistance mechanism, experiments carried out using field emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FESEM-EDS) and Fourier transform infrared spectroscopy (FTIR) demonstrated the ability of BPB1 to sequester arsenate in extracellular polymeric substances on its cell surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号