首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1043篇
  免费   81篇
  国内免费   2篇
  1126篇
  2024年   2篇
  2023年   12篇
  2022年   22篇
  2021年   46篇
  2020年   37篇
  2019年   36篇
  2018年   28篇
  2017年   28篇
  2016年   44篇
  2015年   41篇
  2014年   69篇
  2013年   85篇
  2012年   100篇
  2011年   84篇
  2010年   55篇
  2009年   50篇
  2008年   60篇
  2007年   60篇
  2006年   41篇
  2005年   35篇
  2004年   29篇
  2003年   34篇
  2002年   22篇
  2001年   13篇
  2000年   14篇
  1999年   5篇
  1998年   11篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1126条查询结果,搜索用时 15 毫秒
81.
Freshly isolated human hematopoietic stem and progenitor cells (HSPCs) are small and round cells which upon cultivation adopt a polarized morphology and redistribute certain cell surface antigens. To functionally dissect this polarization process, we addressed impacts of protein synthesis, HSPC trafficking, cytoskeleton organization or lipid raft integrity on the establishment and maintenance of the cell polarity of human HSPCs. Effects on the morphology, sub-cellular distribution of lipid raft-associated molecular polarization markers (Flotillin-1, Flotillin-2, ICAM-3) and in vitro migration capabilities of treated cells were studied. We could distinguish two levels of cellular polarization, a molecular and a morphological level. Our data suggest that protein synthesis, lipid raft integrity and enzymatic activities of PI3K and aPKC are required to organize the molecular cell polarity. The morphological cell polarization process, however, also depends on actin polymerization and rho-GTPase activities. In summary, our data qualify HSPC polarization processes as new pharmaceutical target to interfere with migratory and with homing capabilities of HSPCs.  相似文献   
82.
83.
Because the properties of horizontally-transferred genes will reflect the mutational proclivities of their donor genomes, they often show atypical compositional properties relative to native genes. Parametric methods use these discrepancies to identify bacterial genes recently acquired by horizontal transfer. However, compositional patterns of native genes vary stochastically, leaving no clear boundary between typical and atypical genes. As a result, while strongly atypical genes are readily identified as alien, genes of ambiguous character are poorly classified when a single threshold separates typical and atypical genes. This limitation affects all parametric methods that examine genes independently, and escaping it requires the use of additional genomic information. We propose that the performance of all parametric methods can be improved by using a multiple-threshold approach. First, strongly atypical alien genes and strongly typical native genes would be identified using conservative thresholds. Genes with ambiguous compositional features would then be classified by examining gene context, including the class (native or alien) of flanking genes. By including additional genomic information in a multiple-threshold framework, we observed a remarkable improvement in the performance of several popular, but algorithmically distinct, methods for alien gene detection.  相似文献   
84.

This paper presents a simple multi-band metamaterial absorber for terahertz applications. The unit cell of the proposed structure consists of a single square ring having gaps at the centers on three of its sides. The proposed absorber produces three absorption bands for all polarizations and hence the design can be considered as insensitive to polarization variation. It provides an average absorption of 96.92% for the TE polarization with a peak absorption of 99.44% at 3.87 THz and for the TM polarization, it provides an average absorption of 98.4% with a peak absorption of 99.86% at 3.87 THz. An additional absorption peak is observed for the TE polarization at 1.055 THz that gradually diminishes with the increase in polarization angle and completely vanishes for the TM polarization. Thus, the structure displays a hybrid polarization response with polarization insensitivity in three bands and polarization sensitivity in one band. Parametric analysis has been carried out validating the optimal selection of the design parameters. The simplicity of the design and its combined polarization sensitive and polarization insensitive absorption characteristics can find tremendous applications in the field of terahertz imaging and sensing.

  相似文献   
85.
Oxidative stress and mitochondrial dysfunction in cancer cells represent features that may be exploited therapeutically. We determined whether minor groove binding ligand Hoechst 33342, known to induce mitochondrial dysfunction via increase in reactive oxygen species (ROS), enhances killing of human head and neck cancer (KB) cells mediated by impaired expression of mitochondrial protein involved in electron transfer. Elevation in ROS generation, increase in ΔΨm, down regulation of cytochrome c oxidase (CO), alteration in expression of antioxidant enzymes viz. Mn-SOD and Catalase, and release of cytochrome c into the cytosol, were observed in time-dependent manner when cells were irradiated (5 Gy) in presence of Hoechst 33342. Persistent increase in ROS observed till 48 h following treatment decreased the clonogenic survival and viability to a large extent via increase in ΔΨm, release of cytochrome c and non-coordinated expression of antioxidant enzymes. Treatment with antioxidants PEG-MnSOD and PEG-catalase inhibited the increase in ROS and loss of cell survival, suggesting the involvement of ROS in the Hoechst 33342-induced cell death. The result demonstrated significant sensitization of cancer cells to radiation-induced toxicity in presence of Hoechst 33342 via increasing ROS to a toxic level and impairing CO expression and antioxidant enzymes. This understanding is expected to benefit both in elucidating the detailed mechanisms of actions of DNA interacting drug and designing better molecules for enhancing radiation-induced cell death among cancer cells.  相似文献   
86.
87.
Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm.sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day −7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20+ and CD79a+ cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 107 to 108 copies/ml; set-point values were 104 to 105 SIV RNA copies/ml. Levels of acute mucosal CD4+ T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer''s patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts.In marked contrast to pathogenic human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections of humans and macaques, which are characterized by the constant progression to AIDS in a variable time frame (26), African monkey species naturally infected with SIV are generally spared from any signs of disease (reviewed in references 53 and 71).There are currently three animal models of SIV infection in natural hosts: SIVagm infection of African green monkeys (AGMs), SIVsmm infection of sooty mangabeys, and SIVmnd-1 and SIVmnd-2 infection of mandrills (53, 71). SIV infection in natural hosts is characterized by the following: (i) active viral replication, with set-point viral loads (VLs) similar to or even higher than those found in pathogenic infections (44-46, 49, 50, 52, 61-63); (ii) transient depletion of peripheral CD4+ T cells during primary infection, which rebound to preinfection levels during chronic infection (12, 30, 44-46, 49, 62); (iii) significant CD4+ T-cell depletion in the intestine, which can be partially restored during chronic infection in spite of significant viral replication (21, 48); (iv) low levels of CD4+ CCR5+ cells in blood and tissues (47); (v) transient and moderate increases in immune activation and T-cell proliferation during acute infection, with a return to baseline levels during the chronic phase (44-46, 49, 50, 52, 61-63), as a result of an anti-inflammatory milieu which is rapidly established after infection (14, 30); and (vi) no significant increase in CD4+ T-cell apoptosis during either acute or chronic infection (37, 48), thus avoiding enteropathy and microbial translocation, which control excessive immune activation and prevent disease progression by allowing CD4+ T-cell recovery in the presence of high VLs (21, 48). Hence, the current view is that the main reason behind the lack of disease progression in natural African hosts lies in a better adaptation of the host in response to the highly replicating virus. A better understanding of the mechanisms underlying the lack of disease in natural hosts for SIV infection may provide important clues for understanding the pathogenesis of HIV infection (53, 71).To date, it is still unknown whether or not immune responses are responsible for the lack of disease progression in natural hosts, since data are scarce. Studies of cellular immune responses are significantly more limited than is the case with pathogenic infection, and although not always in agreement (3, 13, 28, 29, 73, 76), their convergence point is that cellular immune responses are not essentially superior to those observed in pathogenic infections (3, 13, 28, 29, 73, 76). This observation is not surprising in the context of the high viral replication in natural hosts. Data are even scarcer on the role of humoral immune responses in the control of disease progression in natural hosts. However, several studies reported that anti-SIV antibody titers are lower in SIV infections of natural hosts, with a lack of anti-Gag responses being characteristic of natural SIV infections in African nonhuman primates (1, 6, 24, 25, 42, 43, 71). Because the viral replication in SIVagm-infected AGMs is of the same magnitude or higher than that in pathogenic infections of rhesus macaques (RMs), it has been hypothesized that these high VLs may be a consequence of the lower antibody titers. Moreover, a recent study has also shown that B cells in lymph nodes (LNs) of AGMs are activated at an earlier time point than is the case for SIVmac251-infected RMs, which implies that humoral immune responses may be important in controlling SIV replication in the natural hosts (9). Conversely, it has been shown that passively transferring immunoglobulins from animals naturally infected with SIVagm prior to infection with a low dose of SIVagm did not prevent infection in AGMs (42, 60), which is in striking contrast to results in studies of pathogenic infections, which convincingly demonstrated with animal models that intravenously administered or topically applied antibodies can protect macaques against intravenous or mucosal simian-human immunodeficiency virus challenge (34-36, 54, 72).Previous CD20+ B-cell-depletion studies during pathogenic RM infections have indicated that humoral immune responses may be important for controlling both the postpeak VL and disease progression (38, 57). However, these studies used strains that are highly resistant to neutralization (SIVmac251 and SIVmac239), making it difficult to assess the role that antibodies have in controlling SIV replication and disease progression. Moreover, our recent results suggested a limited impact of humoral immune responses in controlling replication of a neutralization-sensitive SIVsmm strain in rhesus macaques (18).To investigate the effect that CD20+ B cells and antibodies have on SIV replication in natural hosts, we have depleted CD20+ B cells in vivo in AGMs infected with SIVagm.sab92018. We assessed the impact of humoral immune responses on the control of viral replication and other immunological parameters, and we report that ablating humoral immune responses in SIVagm-infected AGMs does not significantly alter the course of virus replication or disease progression.  相似文献   
88.
89.
We have previously reported that three residues of the fourth transmembrane segment (TM4) of the Na,K- and gastric H,K-ATPase alpha-subunits appear to play a major role in the distinct cation selectivities of these pumps [Mense, M., et al. (2000) J. Biol. Chem. 275, 1749-1756]. Substituting these three residues in the Na,K-ATPase sequence with their H,K-ATPase counterparts (L319F, N326Y, T340S) and replacing the TM3-TM4 ectodomain sequence with that of the H,K-ATPase alpha-subunit result in a pump that exhibits 50% of its maximal ATPase activity in the absence of Na(+) when the assay is performed at pH 6.0. This effect is not seen when the ectodomain alone is replaced. To gain more insight into the contributions of the three residues to establishing the selectivity of these pumps for Na(+) ions versus protons, we generated Na,K-ATPase constructs in which these residues are replaced by their H,K-ATPase counterparts either singly or in combinations. Surprisingly, none of the point mutants nor even the triple mutant was able to hydrolyze ATP at pH 6.0 at a rate greater than 20% of their respective V(max)s. For the point mutants L319F and N326Y, protons seem to competitively inhibit ATP hydrolysis at pH 6.0, based on the low apparent affinity for Na(+) ions at pH 6.0 compared to pH 7.5. It would appear, therefore, that the cation selectivity of Na,K- and H,K-ATPase is generated through a cooperative effort between residues of transmembrane segments and the flanking loops that connect these transmembrane domains. This view is further supported by homology modeling of the Na,K-ATPase based on the crystal structure of the SERCA pump.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号