首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18827篇
  免费   941篇
  国内免费   29篇
  19797篇
  2024年   32篇
  2023年   164篇
  2022年   381篇
  2021年   714篇
  2020年   422篇
  2019年   450篇
  2018年   652篇
  2017年   607篇
  2016年   797篇
  2015年   896篇
  2014年   1146篇
  2013年   1578篇
  2012年   1660篇
  2011年   1464篇
  2010年   847篇
  2009年   739篇
  2008年   861篇
  2007年   830篇
  2006年   691篇
  2005年   624篇
  2004年   507篇
  2003年   431篇
  2002年   380篇
  2001年   318篇
  2000年   290篇
  1999年   258篇
  1998年   102篇
  1997年   78篇
  1996年   83篇
  1995年   79篇
  1994年   62篇
  1993年   57篇
  1992年   159篇
  1991年   147篇
  1990年   115篇
  1989年   87篇
  1988年   129篇
  1987年   104篇
  1986年   80篇
  1985年   83篇
  1984年   83篇
  1983年   47篇
  1982年   40篇
  1981年   47篇
  1980年   43篇
  1979年   58篇
  1978年   36篇
  1977年   44篇
  1976年   32篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
951.
Metalloids represent a wide range of elements with intermediate physiochemical properties between metals and non-metals. Many of the metalloids, like boron, selenium, and silicon are known to be essential or quasi-essential for plant growth. In contrast, metalloids viz. arsenic and germanium are toxic to plant growth. The toxicity of metalloids largely depends on their concentration within the living cells. Some elements, at low concentration, may be beneficial for plant growth and development; however, when present at high concentration, they often exert negative effects. In this regard, understanding the molecular mechanisms involved in the uptake of metalloids by roots, their subsequent transport to different tissues and inter/intra-cellular redistribution has great importance. The mechanisms of metalloids' uptake have been well studied in plants. Also, various transporters, as well as membrane channels involved in these processes, have been identified. In this review, we have discussed in detail the aspects concerning the positive/negative effects of different metalloids on plants. We have also provided a thorough account of the uptake, transport, and accumulation, along with the molecular mechanisms underlying the response of plants to these metalloids. Additionally, we have brought up the previous theories and debates about the role and effects of metalloids in plants with insightful discussions based on the current knowledge.  相似文献   
952.
S. Kumar 《Genetics》1996,143(1):537-548
Maximum likelihood methods were used to study the differences in substitution rates among the four nucleotides and among different nucleotide sites in mitochondrial protein-coding genes of vertebrates. In the 1st+2nd codon position data, the frequency of nucleotide G is negatively correlated with evolutionary rates of genes, substitution rates vary substantially among sites, and the transition/transversion rate bias (R) is two to five times larger than that expected at random. Generally, largest transition biases and greatest differences in substitution rates among sites are found in the highly conserved genes. The 3rd positions in placental mammal genes exhibit strong nucleotide composition biases and the transitional rates exceed transversional rates by one to two orders of magnitude. Tamura-Nei and Hasegawa-Kishino-Yano models with gamma distributed variable rates among sites (gamma parameter, α) adequately describe the nucleotide substitution process in 1st+2nd position data. In these data, ignoring differences in substitution rates among sites leads to largest biases while estimating substitution rates. Kimura's two-parameter model with variable-rates among sites performs satisfactorily in likelihood estimation of R, α, and overall amount of evolution for 1st+2nd position data. It can also be used to estimate pairwise distances with appropriate values of α for a majority of genes.  相似文献   
953.
954.
The role of tryptophan (Trp17) in immunoreactivity of P1, the diagnostically relevant peptide from a major allergen/antigen of Aspergillus fumigatus, was evaluated by chemically modifying tryptophanyl residue of P1. In BIAcore kinetic studies, unmodified P1 showed a 100-fold higher binding with ABPA (Allergic Bronchopulmonary Aspergillosis) patients’ IgG [KD (equilibrium dissociation constant) = 2.74 e−8 ± 0.13 M] than the controls’ IgG (KD = 2.97 e−6± 0.14 M), whereas chemically-modified P1 showed similar binding [KD patients’ IgG = 3.25 e−7± 0.16 M, KD controls’ IgG = 3.86 e−7± 0.19 M] indicating loss of specific immunoreactivity of P1 on tryptophan modification. Modified P1 showed loss of specific binding to IgE and IgG antibodies of ABPA patients in ELISA (Enzyme-Linked Immunosorbent Assay). The study infers that tryptophan residue (Trp17) is essential for immunoreactivity of P1.  相似文献   
955.
The chickpea genotype, CSG-8962 was raised in screenhouse to study salinity induced changes in ethylene evolution, antioxidative defence system and membrane integrity in relation to changes in plant water and mineral content. At vegetative stage (60 d after sowing), the plants were exposed to single saline irrigation (0, 2.5, 5.0 and 10.0 dS m–1). Sampling was done 3 d after saline treatments. The other sets of treated plants were re-irrigated with water and sampled after further 3 d. The w of leaf and s of leaf and roots decreased from –0.47 to –0.61 MPa, –0.67 to –1.23 MPa and from –0.57 to –0.95 MPa, respectively, with increasing salinity. Similarly, RWC of leaf and roots reduced from 87.5 to 72.3 % and 96.7 to 84.35 %, respectively. The decline in s of roots was mainly due to accumulation of proline and total soluble sugar. With salinity, increase in ethylene evolution, 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC oxidase activity was reported. Similarly, marked increase in H2O2 content (20 – 182 %) and lipid peroxidation (43 – 170 %) was observed. The defense mechanism activated in roots was confirmed by the increased activities of superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX), glutathione transferase (GTase), glutathione reductase (GR) and catalase (CAT) but ascorbic acid (AA) content was decreased. About 3-fold increase in Na+/K+ ratio and 2.5 fold increase in Cl content was observed. Upon desalinization, a partial recovery was observed in most of the parameters studied.  相似文献   
956.
The capture of human acute myeloid leukemia KG-1 cells expressing the CD34 surface antigen and the fractionation of human blood lymphocytes were evaluated on polyvinyl alcohol (PVA)-cryogel beads and dimethyl acrylamide (DMAAm) monolithic cryogel with immobilized protein A. The affinity ligand (protein A) was chemically coupled to the reactive PVA-cryogel beads and epoxy-derivatized monolithic cryogels through different immobilization techniques and the binding efficiency of the cell surface receptors specific antibody-labeled cells to the gels/beads was determined. The binding of cells to monolithic cryogel was higher (90-95%) compared with cryogel beads (76%). B-lymphocytes, which bound to the protein A-cryogel beads, were separated from T-lymphocytes with yields for the two cell types 74 and 85%, respectively. About 91% of the bound B-cells could be recovered without significantly impairing their viability. Our results show differences in the percentage of cell-binding to the immunosorbents caused by ligand density, flow shear forces and bond strength between the cells and the affinity surface once distinct chemical coupling of protein A, size of beads, sequence of antibody binding to protein A adsorbents, morphology and geometry of surface matrices were compared.  相似文献   
957.
N-terminally truncated Aβ peptides starting with pyroglutamate (AβpE3) represent a major fraction of all Aβ peptides in the brain of Alzheimer disease (AD) patients. AβpE3 has a higher aggregation propensity and stability and shows increased toxicity compared with full-length Aβ. In the present work, we generated a novel monoclonal antibody (9D5) that selectively recognizes oligomeric assemblies of AβpE3 and studied the potential involvement of oligomeric AβpE3 in vivo using transgenic mouse models as well as human brains from sporadic and familial AD cases. 9D5 showed an unusual staining pattern with almost nondetectable plaques in sporadic AD patients and non-demented controls. Interestingly, in sporadic and familial AD cases prominent intraneuronal and blood vessel staining was observed. Using a novel sandwich ELISA significantly decreased levels of oligomers in plasma samples from patients with AD compared with healthy controls were identified. Moreover, passive immunization of 5XFAD mice with 9D5 significantly reduced overall Aβ plaque load and AβpE3 levels, and normalized behavioral deficits. These data indicate that 9D5 is a therapeutically and diagnostically effective monoclonal antibody targeting low molecular weight AβpE3 oligomers.  相似文献   
958.
959.
The biosynthetic gene cluster for tobramycin, a 2-deoxystreptamine-containing aminoglycoside antibiotic, was isolated from Streptomyces tenebrarius ATCC 17920. A genomic library of S. tenebrarius was constructed, and a cosmid, pST51, was isolated by the probes based on the core regions of 2-deoxy-scyllo-inosose (DOI) synthase, and L-glutamine:DOI aminotransferase and L-glutamine:scyllo-inosose aminotransferase. Sequencing of 33.9 kb revealed 24 open reading frames (ORFs) including putative tobramycin biosynthetic genes. We demonstrated that one of these ORFs, tbmA, encodes DOI synthase by in vitro enzyme assay of the purified protein. The catalytic residues of TbmA and dehydroquinate synthase were studied by homology modeling. The gene cluster found is likely to be involved in the biosynthesis of tobramycin.  相似文献   
960.
Mutations in SOD1 cause FALS by a gain of function likely related to protein misfolding and aggregation. SOD1 mutations encompass virtually every domain of the molecule, making it difficult to identify motifs important in SOD1 aggregation. Zinc binding to SOD1 is important for structural integrity, and is hypothesized to play a role in mutant SOD1 aggregation. To address this question, we mutated the unique zinc binding sites of SOD1 and examined whether these changes would influence SOD1 aggregation. We generated single and multiple mutations in SOD1 zinc binding residues (H71, H80 and D83) either alone or in combination with an aggregate forming mutation (A4V) known to cause disease. These SOD1 mutants were assayed for their ability to form aggregates.Using an in vitro cellular SOD1 aggregation assay, we show that combining A4V with mutations in non-zinc binding domains (G37R or G85R) increases SOD1 aggregation potential. Mutations at two zinc binding residues (H71G and D83G) also increase SOD1 aggregation potential. However, an H80G mutation at the third zinc binding residue decreases SOD1 aggregation potential even in the context of other aggregate forming SOD1 mutations. These results demonstrate that various mutations have different effects on SOD1 aggregation potential and that the H80G mutation appears to uniquely act as a dominant inhibitor of SOD1 aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号