首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16686篇
  免费   828篇
  国内免费   22篇
  2023年   109篇
  2022年   234篇
  2021年   437篇
  2020年   261篇
  2019年   270篇
  2018年   415篇
  2017年   441篇
  2016年   506篇
  2015年   699篇
  2014年   778篇
  2013年   1099篇
  2012年   1210篇
  2011年   1102篇
  2010年   656篇
  2009年   599篇
  2008年   693篇
  2007年   702篇
  2006年   616篇
  2005年   514篇
  2004年   495篇
  2003年   414篇
  2002年   373篇
  2001年   341篇
  2000年   310篇
  1999年   249篇
  1998年   135篇
  1997年   111篇
  1996年   100篇
  1995年   122篇
  1994年   108篇
  1993年   100篇
  1992年   223篇
  1991年   215篇
  1990年   205篇
  1989年   197篇
  1988年   171篇
  1987年   169篇
  1986年   149篇
  1985年   178篇
  1984年   173篇
  1983年   117篇
  1982年   115篇
  1981年   109篇
  1980年   98篇
  1979年   153篇
  1978年   114篇
  1977年   99篇
  1974年   120篇
  1973年   93篇
  1972年   102篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
To study the effect of conserved cysteins on biochemical properties of a previously cloned metagenomic polygalacturonase (PecJKR01), single point variants A42C, M283C, and double variants M283C + F24C, M283C + A42C were constructed. Mutations resulted in shifting the pH toward lower range and enhanced thermostability. The mutants were optimally active at pH 5.0 as compared to pH 7.0 for wild type. Point variants demonstrated slightly higher enzyme activity at 60o C than that of the wild type. In addition, the A42C/M283C + A42C variants displayed nearly 28–40% enhanced thermostability, while M283C + 24C was least thermostable among all variants/ wild type. Cys (pKa 8.18) possibly interfered in the ionization state resulting in change in pH optima of variants. Structure function analysis suggested that the increased activity in A42C could be due to van der Waals interactions in S···Ar with Phe29 and formation of an additional hydrogen bond between Cys42-S....HN-Ala31. Higher thermostability and decreased enzymatic activity of M283C might be attributed to the incorporation of additional disulfide linkage between Cys283 S=S Cys255 and decreased cavity size. Overall cysteine at position 42 was most promising in shifting the optimum pH toward lower range as well as for thermostability of enzyme.  相似文献   
952.
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope’s interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope ‘LVAIAVVII’ with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope ‘ILVAIAVVIITYLI’. Resulting epitope was found to have consistent interaction with TLR2 during long term (100?ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population.

Communicated by Ramaswamy H. Sarma  相似文献   

953.

Iron deficiency anaemia is a major challenge among consumers in developing countries. Given the deficiency of iron in the diet, there is an urgent need to devise a strategy for providing the required iron in the daily diet to counter the iron deficiency anaemia. We propose that iron biofortification of wheat (Triticum aestivum L.) through seed priming would be an innovative strategy to address this issue. This investigation attempts to find the interaction of iron oxide nanoparticles on germination, growth parameters and accumulation of grain iron in two contrasting wheat genotypes WL711 (low-iron genotype) and IITR26 (high-iron genotype). Wheat seeds were primed with different concentrations of iron oxide nanoparticles in the range of 25–600 ppm, resulting in differential accumulation of grain iron contents. We observed a pronounced increase in germination percentage and shoot length at 400 and 200 ppm treatment concentrations in IITR26 and WL711 genotypes, respectively. Intriguingly, the treatment concentration of 25 ppm demonstrated higher accumulation with a significant increase in grain iron contents to 45.7% in IITR26 and 26.8% in WL711 genotypes, respectively. Seed priming represents an innovative and user-friendly approach for wheat biofortification which triggers iron acquisition and accumulation in grains.

  相似文献   
954.
955.
The role of niacin’s metabolite, nicotinamide adenine dinucleotide (NAD), in DNA repair via base-excision repair pathway is well documented. We evaluated if niacin deficiency results in genetic instability in normal human fetal lung fibroblasts (MRC-5), and further, does it leads to enhanced accumulation of cigarette smoke–induced genetic damage? MRC-5 cells were grown discretely in niacin-proficient/deficient media, and exposed to nicotine-derived nitrosamine ketone (NNK, a cigarette smoke carcinogen). Niacin deficiency abated the NAD polymerization, augmented the spontaneous induction of micronuclei (MN) and chromosomal aberrations (CA) and raised the expression of 10 genes and suppressed 12 genes involved in different biological functions. NNK exposure resulted in genetic damage as measured by the induction of MN and CA in cells grown in niacin-proficient medium, but the damage became practically marked when niacin-deficient cells were exposed to NNK. NNK exposure raised the expression of 16 genes and suppressed the expression of 56 genes in cells grown in niacin-proficient medium. NNK exposure to niacin-deficient cells raised the expression of eight genes including genes crucial in promoting cancer such as FGFR3 and DUSP1 and suppressed the expression of 33 genes, including genes crucial in preventing the onset and progression of cancer like RASSF2, JUP, and IL24, in comparison with the cells grown in niacin-proficient medium. Overall, niacin deficiency interferes with the DNA damage repair process induced by chemical carcinogens like NNK, and niacin-deficient population are at the higher risk of genetic instability caused by cigarette smoke carcinogen NNK.  相似文献   
956.
957.
Chronic inflammation contributes to obesity mediated metabolic disturbances, including insulin resistance. Obesity is associated with altered microbial load in metabolic tissues that can contribute to metabolic inflammation. Different bacterial components such as, LPS, peptidoglycans have been shown to underpin metabolic disturbances through interaction with host innate immune receptors. Activation of Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) with specific peptidoglycan moieties promotes insulin resistance, inflammation and lipolysis in adipocytes. However, it was not clear how Nod1-mediated lipolysis and inflammation is linked. Here, we tested if Nod1-mediated lipolysis caused accumulation of lipid intermediates and promoted cell autonomous inflammation in adipocytes. We showed that Nod1-mediated lipolysis caused accumulation of diacylglycerol (DAG) and activation of PKCδ in 3T3-L1 adipocytes, which was prevented with a Nod1 inhibitor. Nod1-activated PKCδ caused downstream stimulation of IRAK1/4 and was associated with increased expression of proinflammatory cytokines such as, IL-1β, IL-18, IL-6, TNFα and MCP-1. Pharmacological inhibition or siRNA mediated knockdown of IRAK1/4 attenuated Nod1-mediated activation of NF-κB, JNK, and the expression of proinflammatory cytokines. These results reveal that Nod1-mediated lipolysis promoted accumulation of DAG, which engaged PKCδ and IRAK1/4 to augment inflammation in 3T3-L1 adipocytes.  相似文献   
958.
Southern leaf blight (SLB) caused by the fungus Cochliobolus heterostrophus (Drechs.) Drechs. is a major foliar disease of maize worldwide. Our objectives were to identify quantitative trait loci (QTL) for resistance to SLB and flowering traits in recombinant inbred line (RIL) population derived from the cross of inbred lines LM5 (resistant) and CM140 (susceptible). A set of 207 RILs were phenotyped for resistance to SLB at three time intervals for two consecutive years. Four putative QTL for SLB resistance were detected on chromosomes 3, 8 and 9 that accounted for 54% of the total phenotypic variation. Days to silking and anthesis–silking interval (ASI) QTL were located on chromosomes 6, 7 and 9. A comparison of the obtained results with the published SLB resistance QTL studies suggested that the detected bins 9.03/02 and 8.03/8.02 are the hot spots for SLB resistance whereas novel QTL were identified in bins 3.08 and 8.01/8.04. The linked markers are being utilized for marker‐assisted mobilization of QTL conferring resistance to SLB in elite maize backgrounds. Fine mapping of identified QTL will facilitate identification of candidate genes underlying SLB resistance.  相似文献   
959.
The crystal structure of a ternary complex of proteinase K, Hg(II) and a hexapeptide N-Ac-Pro-Ala-Pro-Phe-Pro-Ala-NH2 has been determined at 2.2 Å resolution and refined to an R factor of 0.172 for 12,910 reflections. The mercury atom occupies two alternate sites, each of which was assigned an occupancy of 0.45. These two sites are bridged by Cys-73 Sγ which forms covalent bonds to both. Both mercury sites form regular polyhedrons involving atoms from residues Asp-39, His-69, Cys-73, His-72, Met-225, and Wat-324. The complex formation with mercury seems to disturb the stereochemistry of the residues of the catalytic triad Asp-39, His-69, and Ser-224 appreciably, thus reducing the enzymatic activity of proteinase K to 15%. The electron density in the difference Fourier map shows that the hexapeptide occupies the S1 subsite predominantly and the standard recognition site constituted by Ser-132 to Gly-136 and Gly-100 to Tyr-104 segments is virtually empty. The hexapeptide is held firmly through a series of hydrogen bonds involving protein atoms and water molecules. As a result of complex formation, Asp-39, His-69, Met-225, Ile-220, Ser-219, Thr-223, and Ser-224 residues move appreciably to accommodate the mercury atoms and the hexapeptide. The largest movement is observed for Met-225 which is involved in multiple interactions with both mercury and the hexapeptide. The activity results indicate an inhibition rate of 95%, as a result of the combined effect of mercury and hexapeptide. © 1996 Wiley-Liss, Inc.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号