首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   41篇
  国内免费   1篇
  1032篇
  2023年   6篇
  2022年   9篇
  2021年   20篇
  2020年   13篇
  2019年   14篇
  2018年   21篇
  2017年   19篇
  2016年   13篇
  2015年   37篇
  2014年   42篇
  2013年   67篇
  2012年   82篇
  2011年   80篇
  2010年   39篇
  2009年   37篇
  2008年   46篇
  2007年   62篇
  2006年   59篇
  2005年   47篇
  2004年   52篇
  2003年   39篇
  2002年   32篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   14篇
  1997年   8篇
  1996年   6篇
  1995年   10篇
  1994年   8篇
  1993年   6篇
  1991年   9篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   8篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   11篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1974年   3篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有1032条查询结果,搜索用时 15 毫秒
91.
92.
Acyltransferase activity of amidase from Bacillus sp. APB-6 was enhanced (24 U) by multiple feedings of N-methylacetamide (70 mM) into the production medium. Hyperinduced whole resting cells of Bacillus sp. APB-6 corresponding to 4 g/L (dry cell weight), when treated with 10 mM DTT (dithiothreitol) resulted in 93% molar conversion of acetamide (300 mM) to acetohydroxamic acid in presence of hydroxylamine-HCl (800 mM) after 30 min at 45 °C in a 1 L reaction mixture. After lyophilization, a 62 g powder containing 34% (wt wt−1) acetohydroxamic acid was recovered. This is the first report where DTT has been used to enhance acyltransfer reaction and such high molar conversion (%) of amide to hydroxamates was recorded at 1 L scale.  相似文献   
93.
Anomeric 1,5-anhydrosugar 2 was synthesized from d-glucose derived N-Cbz protected aminodiol 8. The key step involves, acid catalyzed hydrolysis of 1,2-acetonide group in 8 to get hemiacetal that concomitantly undergoes formation of the pyranose ring by attack of C-3 hydroxyethyl group on anomeric C-1, leading to the formation of dioxabicyclo[3.2.1]octane skeleton which on hydrogenolyis gave 2. The glycosidase inhibitory activities of hydroxy- and amino-substituted anomeric 1,5-anhydrosugars 1 and 2, respectively, showed selective inhibition of α-mannosidase. These results were substantiated by molecular docking studies using WHAT IF software and AUTODOCK 4.0 program.  相似文献   
94.
The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ~35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the analysis of protein-protein interactions for chemical biology and molecular therapeutics.  相似文献   
95.
Glycoproteins are involved in many important molecular recognition processes including invasion, adhesion, differentiation, and development. To identify the glycoproteins of Toxoplasma gondii, a proteomic analysis was undertaken. T. gondii proteins were prepared and fractioned using lectin affinity chromatography. The proteins in each fraction were then separated using SDS-PAGE and identified by tryptic in gel digestion followed by tandem mass spectrometry. Utilizing these methods 132 proteins were identified. Among the identified proteins were 17 surface proteins, 9 microneme proteins, 15 rhoptry proteins, 11 heat shock proteins (HSP), and 32 hypothetical proteins. Several proteins had 1–5 transmembrane domains (TMD) with some being as large as 608.3 kDa. Both lectin-fluorescence labeling and lectin blotting were employed to confirm the presence of carbohydrates on the surface or cytoplasm of T. gondii parasites. PCR demonstrated that selected hypothetical proteins were expressed in T. gondii tachyzoites. This data provides a large-scale analysis of the T. gondii glycoproteome. Studies of the function of glycosylation of these proteins may help elucidate mechanism(s) involved in invasion improving drug therapy as well as identify glycoproteins that may prove to be useful as vaccine candidates.  相似文献   
96.
High-resolution microscopy techniques provide a plethora of information on biological structures from the cellular level down to the molecular level. In this review, we present the unique capabilities of transmission electron and atomic force microscopy to assess the structure, oligomeric state, function and dynamics of channel and transport proteins in their native environment, the lipid bilayer. Most importantly, membrane proteins can be visualized in the frozen-hydrated state and in buffer solution by cryo-transmission electron and atomic force microscopy, respectively. We also illustrate the potential of the scintillation proximity assay to study substrate binding of detergent-solubilized transporters prior to crystallization and structural characterization.  相似文献   
97.
The P23H mutation in the rhodopsin gene causes rhodopsin misfolding, altered trafficking and formation of insoluble aggregates leading to photoreceptor degeneration and autosomal dominant retinitis pigmentosa (RP). There are no effective therapies to treat this condition. Compounds that enhance dissociation of protein aggregates may be of value in developing new treatments for such diseases. Anti-protein aggregating activity of curcumin has been reported earlier. In this study we present that treatment of COS-7 cells expressing mutant rhodopsin with curcumin results in dissociation of mutant protein aggregates and decreases endoplasmic reticulum stress. Furthermore we demonstrate that administration of curcumin to P23H-rhodopsin transgenic rats improves retinal morphology, physiology, gene expression and localization of rhodopsin. Our findings indicate that supplementation of curcumin improves retinal structure and function in P23H-rhodopsin transgenic rats. This data also suggest that curcumin may serve as a potential therapeutic agent in treating RP due to the P23H rhodopsin mutation and perhaps other degenerative diseases caused by protein trafficking defects.  相似文献   
98.
Abstract Artemisia annua (Asteraceae) is well known for its antimalarial activities due to presence of the compound artemisinin. We isolated a methoxy coumarin from the stem part of A. annua and confirmed its identity as scopoletin through mass spectral data. The structure was established from 1H‐nuclear magnetic resonance (NMR), 13C‐NMR. The compound scopoletin was evaluated for its feeding deterrence and growth inhibitory potential against a noxious lepidopteran insect, Spilartctia obliqua Walker. Scopoletin gave FD50 (feeding deterrence of 50%) value of 96.7 μg/g diet when mixed into artificial diet. S. obliqua larvae (12‐day‐old) exposed to the highest concentration (250 μg/g diet) of scopoletin showed 77.1% feeding‐deterrence. In a growth inhibitory assay, scopoletin provided 116.9% growth inhibition at the highest dose of 250 μg/g diet with a GI50 (growth inhibition of 50%) value of 20.9 μg/g diet. Statistical analysis showed a concentration‐dependent dose response relationship toward both feeding deterrent and growth inhibitory activities. Artemisinin is found mainly in the leaves of A. annua and not in the stems, which are typically discarded as waste. Therefore identification of scopoletin in stems of A. annua may be important as a source of this material for pest control.  相似文献   
99.
The present study was undertaken to investigate the radiosensitizing effects of 2-deoxy-D-glucose (2DG), a glycolytic inhibitor, and ferulic acid (FA), a phenolic prooxidant, in relatively radioresistant human non-small cell lung carcinoma cells (NCI-H460). NCI-H460 cells were treated with 4 mM 2DG and/or 53.8 μM FA for 24 h and then exposed to 2 Gy irradiation. Compared to cells that were 2 Gy-irradiated alone (50%), FA and 2DG with radiation (FA+2DG+IR) showed additional decrease in cell viability (15%). This has been further validated by decreased (86%) colony formation in 2DG+FA+IR group compared to 2DG (29%), FA (24%) and IR (37%) group alone. Increased apoptotic cells (84%) in 2DG+FA+IR group further confirm the radiosensitizing property of 2DG or FA. In NCI-H460 cells 2DG decreased NADPH levels (10%) and FA increased ROS levels leading to enhanced oxidative damage in the 2DG+FA+IR group. This was reflected as altered mitochondrial membrane potential, increased lipid peroxidative markers (TBARS), DNA damage and decreased intracellular glutathione (GSH) levels in combined treatment groups when compared to radiation or 2DG or FA treatment alone. The present study suggests that FA and 2DG act by increasing oxidative damage in NCI-H460 cells.  相似文献   
100.
The present work is aimed at evaluating the radioprotective effect of curcumin, a naturally occurring phenolic compound on γ-radiation induced toxicity. The cellular changes were estimated by using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH). The DNA damage was analysed by using cytokinesis blocked micronucleus assay and dicentric aberration (DC). The γ-radiation at different doses (1, 2 and 4 Gy) were found to significantly increase micronuclei (MN), DC frequencies and TBARS level whereas the levels of GSH and antioxidant enzymes were significantly decreased. The maximum damage to lymphocytes was observed at 4 Gy irradiation. Curcumin pretreatment (1, 5 and 10 μg/ml) significantly decreased the frequency of MN and DC. The levels of TBARS decreased and activities of SOD, CAT and GPx significantly increased along with GSH levels. At 1 Gy irradiation all the concentrations of curcumin (1, 5 and 10 μg/ml) significantly protected the lymphocytes from radiation damage. At 2 Gy irradiation, 5 and 10 μg/ml of curcumin showed significant radioprotection. Since the highest damage was observed at 4 Gy irradiation both 1 and 5 μg/ml of curcumin pretreatment were not sufficient to protect the lymphocytes from radiation damage but 10 μg/ml of curcumin significantly protected the cultured lymphocytes from radiation damage. Thus, pretreatment with curcumin gives protection to lymphocytes against γ-radiation induced cellular damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号