首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   922篇
  免费   38篇
  国内免费   1篇
  2023年   4篇
  2022年   7篇
  2021年   20篇
  2020年   12篇
  2019年   14篇
  2018年   21篇
  2017年   15篇
  2016年   13篇
  2015年   34篇
  2014年   41篇
  2013年   66篇
  2012年   82篇
  2011年   78篇
  2010年   37篇
  2009年   34篇
  2008年   42篇
  2007年   59篇
  2006年   58篇
  2005年   41篇
  2004年   48篇
  2003年   38篇
  2002年   31篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   10篇
  1994年   7篇
  1993年   5篇
  1991年   9篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1985年   4篇
  1984年   6篇
  1982年   3篇
  1981年   10篇
  1980年   7篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1973年   2篇
  1972年   2篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有961条查询结果,搜索用时 15 毫秒
111.
The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.  相似文献   
112.
The most frequently reported symptom of exposure to high altitude is loss of body mass and decreased performance which has been attributed to altered protein metabolism affecting skeletal muscles mass. The present study explores the mechanism of chronic hypobaric hypoxia mediated skeletal muscle wasting by evaluating changes in protein turnover and various proteolytic pathways. Male Sprague-Dawley rats weighing about 200 g were exposed to hypobaric hypoxia (7,620 m) for different durations of exposure. Physical performance of rats was measured by treadmill running experiments. Protein synthesis, protein degradation rates were determined by (14)C-Leucine incorporation and tyrosine release, respectively. Chymotrypsin-like enzyme activity of the ubiquitin-proteasome pathway and calpains were studied fluorimetrically as well as using western blots. Declined physical performance by more than 20%, in terms of time taken in exhaustion on treadmill, following chronic hypobaric hypoxia was observed. Compared to 1.5-fold increase in protein synthesis, the increase in protein degradation was much higher (five-folds), which consequently resulted in skeletal muscle mass loss. Myofibrillar protein level declined from 46.79 ± 1.49 mg/g tissue at sea level to 37.36 ± 1.153 (P < 0.05) at high altitude. However, the reduction in sarcoplasmic proteins was less as compared to myofibrillar protein. Upregulation of Ub-proteasome pathway (five-fold over control) and calpains (three-fold) has been found to be important factors for the enhanced protein degradation rate. The study provided strong evidences suggesting that elevated protein turnover rate lead to skeletal muscle atrophy under chronic hypobaric hypoxia via ubiquitin-proteasome pathway and calpains.  相似文献   
113.
A wide number of pesticides, including highly persistent organochlorine compounds, such as lindane (γ-Hexachlorocyclohexane), have deteriorative effect on fauna and flora by inducing oxidative stress. Lindane induces cell damage by producing free radicals and reactive oxygen species. Quercetin, a dietary flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. In this study the flavonoid quercetin was used to investigate its antioxidative effect against lindane induced oxidative stress in rats. The level of lipid peroxidation, reduced glutathione (GSH) were analysed in addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione-s-transferase (GST) activities in the liver and kidney tissue. Levels of hepatic marker enzymes in serum like Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) and renal markers like serum creatinine and serum urea were estimated. Administration of Lindane induced histopathological alterations and increased levels of serum hepatic and renal markers and malondialdehyde (MDA) with a significant decrease in GSH content and CAT, SOD, GPx and GST activities. Cotreatment of quercetin along with lindane significantly decreased the lindane induced alteration in histology, serum hepatic and renal markers and MDA and also improved the cellular antioxidant status. The results show that Quercetin ameliorates Lindane induced oxidative stress in liver and kidney. The quercetin exhibited chemopreventive effect when administered along with lindane.  相似文献   
114.
The purpose of this study is to evaluate the cord blood level of toxic and trace elements and to identify their determinants in Terai, Nepal. One hundred pregnant women were recruited from one hospital in Chitwan, Nepal in 2008. The cord blood levels of toxic [lead (Pb), arsenic (As), and cadmium (Cd)], essential trace elements [zinc (Zn), selenium (Se), and copper (Cu)], demographic, socioeconomic, and behavioral variables were measured. The mean values of Pb, As, Cd, Zn, Se, and Cu in cord blood level were found as 31.7, 1.46, 0.39, 2,286, 175, and 667 μg/L, respectively. In the multivariate regression model, cord blood As levels from less educated mothers were higher than those from educated mothers (coefficient = -0.01, 95% confidence interval [CI] = -0.02-0.00). The maternal age was positively associated with the cord blood Cd level (coefficient = 0.02, 95% CI = 0.01-0.03), while it was negatively associated with the cord blood As level (coefficient = -0.01, 95% CI = -0.03--0.01). Cord blood levels of Pb, Zn, Se, and Cu were not associated with maternal age, socioeconomic status, living environment, and smoking status. As and Cd levels were relatively lower than those reported in previous studies in Asia, while the levels of Pb and the trace elements were similar. Less educated mothers are more likely to become a higher in utero As source to their fetus, and fetuses of older mothers were more likely to have higher in utero Cd exposure in Terai, Nepal.  相似文献   
115.
For most cultivated mammalian cells, glutamine is an essential medium component. However, glutamine consumption results in the production of ammonia, a cytotoxic byproduct. Here we investigated the effect of glutamine reduction on recombinant protein production and ammonia accumulation in transiently transfected CHO and HEK-293E cells maintained under conditions of growth arrest. Maximum transient recombinant protein yields were observed in HEK-293E cultures without glutamine and in CHO cultures with 2 mM glutamine. The initial concentration of glutamine correlated with the level of ammonia accumulation in each culture. For both a stable CHO-derived cell line and a polyclonal population of recombinant CHO cells grown under conditions of mild hypothermia, the highest volumetric protein productivity was observed in cultures without glutamine. Here, the level of ammonia accumulation also corresponded to the initial glutamine concentration. Our data demonstrate that reduction of glutamine in the medium is an effective approach to improve protein production in both transiently and stably transfected mammalian cells when applying conditions that reduce or arrest the growth of these cells.  相似文献   
116.
Although small interfering RNA (siRNA) can silence the expression of disease-related genes, delivery of these highly charged molecules is challenging. Delivery approaches for siRNAs are actively being pursued, and improved strategies are required for nontoxic and efficient delivery for gene knockdown. Low density lipoprotein (LDL) is a natural and endogenous nanoparticle that has a rich history as a delivery vehicle. Here, we examine purified LDL nanoparticles as carriers for siRNAs. When siRNA was covalently conjugated to cholesterol, over 25 chol-siRNA could be incorporated onto each LDL without changing nanoparticle morphology. The resulting LDL-chol-siRNA nanoparticles were selectively taken up into cells via LDL receptor mediated endocytosis, resulting in enhanced gene silencing compared to free chol-siRNA (38% gene knock down versus 0% knock down at 100 nM). However, silencing efficiency was limited by the receptor-mediated entrapment of the LDL-chol-siRNA nanoparticles in endolysosomes. Photochemical internalization demonstrated that endolysosome disruption strategies significantly enhance LDL-mediated gene silencing (78% at 100 nM).  相似文献   
117.
The metabolomic approach has been widely used in toxicology to investigate mechanisms of toxicity. To understand the mammalian system??s response to nickel exposure, we analysed the NiCl2 induced metabolomic changes in urine of rats using 1H nuclear magnetic resonance (1H NMR) spectroscopy together with clinically relevant biochemical parameters. Male Sprague?CDawley rats were administered intraperitoneally with NiCl2 at doses of 4, 10 and 20?mg/kg body weight. Urine samples were collected at 8, 16, 24, 72, 96 and 120?h post treatment. The metabolomic profile of rat urine showed prominent changes in citrate, dimethylamine, creatinine, choline, trimethylamine oxide (TMAO), phenyl alanine and hippurate at all doses. Principal component analysis of urine 1H NMR spectra demonstrated the dose and time dependent development of toxicity. The metabolomic time trajectory, based on pattern recognition analysis of 1H NMR spectra of urine, illustrated clear separation of pre and post treatments (temporal). Only animals treated with a low dose of NiCl2 returned to normal physiology. The 1H NMR spectral data correlated well with the clinically relevant nephrotoxic biomarkers. The urinary metabolomic phenotyping for NiCl2 induced nephrotoxicity was defined according to the predictive ability of the known metabolite biomarkers, creatinine, citrate and TMAO. The current approach demonstrates that metabolomics, one of the most important platform in system biology, may be a promising tool for identifying and characterizing biochemical responses to toxicity.  相似文献   
118.
Regulatory T cells are essential to maintain immune homeostasis and prevent autoimmunity. Therapy with in vitro expanded human nTRegs is being tested to prevent graft versus host disease, which is a major cause for morbidity and mortality associated with hematopoietic stem cell transplantation. Their usefulness in therapy will depend on their capacity to survive, migrate appropriately and retain suppressive activity when introduced into a transplant recipient. The lack of a suitable animal model for studying the in vivo reconstitutive capability of human nTRegs is a major impediment for investigating the behavior of adoptively transferred nTRegs in vivo. We show that injection of a plasmid encoding human IL-2 is necessary and sufficient for long term engraftment of in vitro expanded nTRegs in NOD-SCID IL2rγcnull mice. We also demonstrate that these in vivo reconstituted TRegs traffic to different organs of the body and retain suppressive function. Finally, in an IL-2 accelerated GVHD model, we show that these in vivo reconstituted TRegs are capable of preventing severe xenogenic response of human PBMCs. Thus, this novel ‘hu-TReg mouse’ model offers a pre-clinical platform to study the in vivo function and stability of human nTRegs and their ability to modulate autoimmune diseases and GVHD.  相似文献   
119.
Bone, a tri-phase composite, consists of nano-sized apatite minerals, an organic component, and water. Heat-treated bovine cortical bone has been proposed as a candidate for void-filling bone substitute. However, the toughness of heat-treated bone is not yet fully studied. Fracture toughness (K(c)) and work of fracture (W(f)) of hydrated, dehydrated, and ashed bovine bone were estimated using a single-edge V-notched beam method. Thermal gravimetric analysis and differential thermal analysis were used to determine the temperature at which the organics and water were removed. Dehydrated specimens were obtained by placing the samples in a 60 degrees C vacuum oven for 24h or a 110 degrees C furnace for 2h. Ashed specimens were obtained by heat-treating samples at 600 degrees C for 24h. K(c) of bovine specimens decreased from 5.5MPa.m(1/2) for hydrated bone, to 3.8MPa.m(1/2) for dehydrated specimens, and to 0.36MPa.m(1/2) for ashed specimens. W(f) decreased from 7.1 to 1.1kJ/m(2) for dehydrated specimens, and to 0.04kJ/m(2) for ashed specimens. The main reasons for the significant decreases in K(c) and W(f) may be attributed to water's ability in stabilizing collagen structure and to the organics' ability in making bone more ductile. Because of the large decrease in fracture toughness and work of fracture, we suggest that ashed bone is not appropriate for load-bearing bone substitute in areas where bone experiences loadings in flexure.  相似文献   
120.
Many cell types contain metal-ion unsaturated metallothionein (MT). Considering the Zn(2+) binding affinity of metallothionein, the existence of this species in the intracellular environment constitutes a substantial "thermodynamic sink". Indeed, the mM concentration of glutathione may be thought of in the same way. In order to understand how apo-MT and the rest of the Zn-proteome manage to co-exist, experiments examined the in vitro reactivity of Zn-proteome with apo-MT, glutathione (GSH), and a series of common Zn(2+) chelating agents including N,N,N',N'-(2-pyridylethyl)ethylenediammine (TPEN), EDTA, and [(2,2'-oxyproplylene-dinitrilo]tetraacetic acid (EGTA). Less than 10% of Zn-proteome from U87mg cells reacted with apo-MT or GSH. In contrast, each of the synthetic chelators was 2-3 times more reactive. TPEN, a cell permeant reagent, also reacted rapidly with both Zn-proteome and Zn-MT in LLC-PK(1) cells. Taking a specific zinc finger protein for further study, apo-MT, GSH, and TPEN inhibited the binding of Zn(3)-Sp1 with its cognate DNA site (GC-1) in the sodium-glucose co-transporter promoter of mouse kidney. In contrast, preformation of Zn(3)-Sp1-(GC-1) prevented reaction with apo-MT and GSH; TPEN remained active but at a higher concentration. Whereas, Zn(3)-Sp1 is active in cells containing apo-MT and GSH, exposure of LLC-PK(1) cells to TPEN for 24h largely inactivated its DNA binding activity. The results help to rationalize the steady state presence of cellular apo-MT in the midst of the many, diverse members of the Zn-proteome. They also show that TPEN is a robust intracellular chelator of proteomic Zn(2+).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号