首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   103篇
  2023年   14篇
  2022年   24篇
  2021年   39篇
  2020年   37篇
  2019年   31篇
  2018年   32篇
  2017年   26篇
  2016年   34篇
  2015年   52篇
  2014年   67篇
  2013年   75篇
  2012年   99篇
  2011年   89篇
  2010年   57篇
  2009年   52篇
  2008年   60篇
  2007年   74篇
  2006年   55篇
  2005年   50篇
  2004年   35篇
  2003年   32篇
  2002年   22篇
  2001年   12篇
  2000年   11篇
  1999年   10篇
  1998年   12篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   10篇
  1989年   4篇
  1988年   5篇
  1986年   8篇
  1985年   4篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   4篇
  1977年   4篇
  1975年   4篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1968年   4篇
  1964年   3篇
排序方式: 共有1249条查询结果,搜索用时 17 毫秒
61.
Nonhomologous DNA end joining (NHEJ) is one of the major double-strand break (DSB) repair pathways in higher eukaryotes. Recently, it has been shown that alternative NHEJ (A-NHEJ) occurs in the absence of classical NHEJ and is implicated in chromosomal translocations leading to cancer. In the present study, we have developed a novel biochemical assay system utilizing DSBs flanked by varying lengths of microhomology to study microhomology-mediated alternative end joining (MMEJ). We show that MMEJ can operate in normal cells, when microhomology is present, irrespective of occurrence of robust classical NHEJ. Length of the microhomology determines the efficiency of MMEJ, 5 nt being obligatory. Using this biochemical approach, we show that products obtained are due to MMEJ, which is dependent on MRE11, NBS1, LIGASE III, XRCC1, FEN1 and PARP1. Thus, we define the enzymatic machinery and microhomology requirements of alternative NHEJ using a well-defined biochemical system.DNA double-strand breaks (DSBs) are the most deleterious to the genome among various lesions. Nonhomologous end joining (NHEJ) is one of the major DSB repair pathways in higher eukaryotes.1, 2, 3 In the absence of key NHEJ factors, another distinct but error-prone pathway known as alternative NHEJ (A-NHEJ) has been described to have an important role in DSB repair.4, 5, 6, 7 It has been shown that majority of A-NHEJ-mediated repair of DSBs utilize distinct microhomology regions, hence termed microhomology-mediated end joining (MMEJ).4, 8, 9A-NHEJ has been proposed as a possible cause for chromosomal translocations. Studies have shown co-amplification of c-MYC and IgH locus from pro-B lymphomas in mice deficient for p53 and NHEJ.10 A reduced level of class switch recombination (CSR) and increased number of chromosomal rearrangements at IgH locus have been shown in XRCC4- and LIGASE IV-deficient murine B cells.8 The occurrence of robust alternative end joining has been reported in the absence of NHEJ proteins, when murine RAG proteins were absent.11Unraveling the enzymatic machinery involved in alternative end joining is currently an active area of research. Recently, it was shown that MRE11-RAD50-NBS1 complex may be involved in a subset of alternative NHEJ,5, 12, 13, 14 whereas ATM has a regulatory role.15 Role of PARP1 in repairing switch regions through a microhomology-mediated pathway leading to IgH/c-MYC translocations during immunoglobulin CSR has been described.16 Besides, studies have also suggested a role for DNA LIGASE IIIα and WRN in A-NHEJ.17 Interestingly, XRCC1 was shown to be dispensable in A-NHEJ during CSR, whereas functional relevance of Ligase I, III and Pol λ have been established.18, 19, 20 Hence, it can be concluded that canonical NHEJ (C-NHEJ) requires LIGASE IV–XRCC4 complex, while A-NHEJ is predominant in the absence of C-NHEJ proteins and is mainly characterized by joining utilizing microhomology (MMEJ). Further, it has been demonstrated that RPA, when bound to single-stranded DNA can antagonize MMEJ.21 Very recently, a genetic system was reported in budding yeast to detect microhomology-mediated repair.22 However, little is known whether alternative NHEJ can be operative when classical NHEJ machinery is intact.23 A recent study suggested that MMEJ is also functional in normal mammalian cells. Besides, HR and MMEJ share the initial steps of end resection for DSB repair in mammalian cells.24 However, it appears that there is not much consensus among different research groups over its presence and relevance in normal cells.23 Therefore, several aspects of alternative NHEJ still need to be resolved. For example, its precise mechanism and microhomology length requirements are yet to be fully uncovered. Its occurrence in normal cells needs to be proved beyond doubt. Although there are independent studies showing the role of multiple proteins using gene knockdown or knockout strategies, their involvement needs to be confirmed.In the present study, we have established a cell-free repair assay system using which we show that MMEJ is operative even in the presence of classical NHEJ machinery. Further, our data suggest that MMEJ operates not only in cancer cells but also in normal cells. We show that a minimum of 5 nt microhomology is required for MMEJ and is independent of classical NHEJ proteins such as KU70, KU80 and LIGASE IV. Finally, we show that MRN complex, XRCC1, FEN1, PARP1 and LIGASE III are the factors responsible for joining mediated through microhomology.  相似文献   
62.

Objective

The aim of this study was to evaluate whether the distribution pattern of early ischemic changes in the initial MRI allows a practical method for estimating leptomeningeal collateralization in acute ischemic stroke (AIS).

Methods

Seventy-four patients with AIS underwent MRI followed by conventional angiogram and mechanical thrombectomy. Diffusion restriction in Diffusion weighted imaging (DWI) and correlated T2-hyperintensity of the infarct were retrospectively analyzed and subdivided in accordance with Alberta Stroke Program Early CT score (ASPECTS). Patients were angiographically graded in collateralization groups according to the method of Higashida, and dichotomized in 2 groups: 29 subjects with collateralization grade 3 or 4 (well-collateralized group) and 45 subjects with grade 1 or 2 (poorly-collateralized group). Individual ASPECTS areas were compared among the groups.

Results

Means for overall DWI-ASPECTS were 6.34 vs. 4.51 (well vs. poorly collateralized groups respectively), and for T2-ASPECTS 9.34 vs 8.96. A significant difference between groups was found for DWI-ASPECTS (p<0.001), but not for T2-ASPECTS (p = 0.088). Regarding the individual areas, only insula, M1-M4 and M6 showed significantly fewer infarctions in the well-collateralized group (p-values <0.001 to 0.015). 89% of patients in the well-collateralized group showed 0–2 infarctions in these six areas (44.8% with 0 infarctions), while 59.9% patients of the poor-collateralized group showed 3–6 infarctions.

Conclusion

Patients with poor leptomeningeal collateralization show more infarcts on the initial MRI, particularly in the ASPECTS areas M1 to M4, M6 and insula. Therefore DWI abnormalities in these areas may be a surrogate marker for poor leptomeningeal collaterals and may be useful for estimation of the collateral status in routine clinical evaluation.  相似文献   
63.
We consider genomic imputation for low-coverage genotyping-by-sequencing data with high levels of missing data. We compensate for this loss of information by utilizing family relationships in multiparental experimental crosses. This nearly quadruples the number of usable markers when applied to a large rice Multiparent Advanced Generation InterCross (MAGIC) study.  相似文献   
64.
BamA of Escherichia coli is an essential component of the hetero‐oligomeric machinery that mediates β‐barrel outer membrane protein (OMP) assembly. The C‐ and N‐termini of BamA fold into trans‐membrane β‐barrel and five soluble POTRA domains respectively. Detailed characterization of BamA POTRA 1 missense and deletion mutants revealed two competing OMP assembly pathways, one of which is followed by the archetypal trimeric β‐barrel OMPs, OmpF and LamB, and is dependent on POTRA 1. Interestingly, our data suggest that BamA also requires its POTRA 1 domain for proper assembly. The second pathway is independent of POTRA 1 and is exemplified by TolC. Site‐specific cross‐linking analysis revealed that the POTRA 1 domain of BamA interacts with SurA, a periplasmic chaperone required for the assembly of OmpF and LamB, but not that of TolC and BamA. The data suggest that SurA and BamA POTRA 1 domain function in concert to assist folding and assembly of most β‐barrel OMPs except for TolC, which folds into a unique soluble α‐helical barrel and an OM‐anchored β‐barrel. The two assembly pathways finally merge at some step beyond POTRA 1 but presumably before membrane insertion, which is thought to be catalysed by the trans‐membrane β‐barrel domain of BamA.  相似文献   
65.
β-Glucosidases (β-d-glucoside glucohydrolase, 3.2.1.21) are a group of enzymes mainly involved in the hydrolysis of β-glycosidic bonds connecting carbohydrate residues in different classes of β-d glycosides. During cellulose degradation they convert cellobiose and cellooligosaccharides produced by the endo and exoglucanases to glucose. Most of the microbial β-glucosidases are inhibited by glucose. This limits their application in commercial scale cellulose degradation ventures. Solid state fermentation production of a highly glucose tolerant β-glucosidase by a novel isolate of Paecilomyces was optimized using a two step statistical experiment design. In the first step which employed a Plackett–Burman design, the effects of parameters such as moisture, temperature, pH, inoculum concentration, incubation time and different concentrations of (NH4)2SO4, KH2PO4, NaCl, peptone and cellobiose were evaluated. The parameters with significant influence on the process were selected and fine tuned in the second step using a Box–Behnken design. The model obtained was validated and a peptone concentration of 2 g/l, inoculum concentration of 1.2 × 106 spores/ml and an incubation period of 96 h were found to be optimum for the maximum production of the enzyme. The optimization resulted in a doubling of the enzyme production by the fungus.  相似文献   
66.
Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.  相似文献   
67.
The population structure of Labeo calbasu from 11 rivers belonging to the Indus, Ganges, Bhima, Mahanadi, and Godavari basins was investigated using allozyme marker systems. Seven out of 20 allozyme loci (35%) were polymorphic (P < 0.99). Both probability and score tests indicated significant deviation of genotype proportions from Hardy–Weinberg expectations at two loci, XDH* (Mahanadi, Bhima, and Godavari) and G6PDH* (Mahanadi). A pairwise genetic homogeneity test and F ST values indicated a low-to-moderate level (0.0515) of genetic structuring in the wild population of L. calbasu. AMOVA analysis also indicated moderate differentiation among the samples from different river basins. Analysis for genetic bottleneck was performed under the infinite allele model. The study revealed nine genetic stocks of L. calbasu from the natural population across Indian rivers. Evidence of genetic bottlenecks in some rivers was also revealed.  相似文献   
68.
69.
70.
Disulfide bonds play an important role in protein stability and function. Here, we describe a general procedure for generating disulfide-linked dimers and multimers of proteins of known crystal structures. An algorithm was developed to predict sites in a protein compatible with intermolecular disulfide formation with neighboring molecules in the crystal lattice. A database analysis was carried out on 46 PDB coordinates to verify the general applicability of this algorithm to predict intermolecular disulfide linkages. On the basis of the predictions from this algorithm, mutants were constructed and characterized for a model protein, thioredoxin. Of the five mutants, as predicted, in solution four formed disulfide-linked dimers while one formed polymers. Thermal and chemical denaturation studies on these mutant thioredoxins showed that three of the four dimeric mutants had similar stability to wild-type thioredoxin while one had lower stability. Three of the mutant dimers crystallized readily (in four to seven days) in contrast to the wild-type protein, which is particularly difficult to crystallize and takes more than a month to form diffraction-quality crystals. In two of the three cases, the structure of the dimer was exactly as predicted by the algorithm, while in the third case the relative orientation of the monomers in the dimer was different from the predicted one. This methodology can be used to enhance protein crystallizability, modulate the oligomerization state and to produce linear chains or ordered three-dimensional protein arrays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号