全文获取类型
收费全文 | 1377篇 |
免费 | 103篇 |
专业分类
1480篇 |
出版年
2023年 | 13篇 |
2022年 | 28篇 |
2021年 | 50篇 |
2020年 | 40篇 |
2019年 | 38篇 |
2018年 | 27篇 |
2017年 | 46篇 |
2016年 | 49篇 |
2015年 | 59篇 |
2014年 | 76篇 |
2013年 | 93篇 |
2012年 | 133篇 |
2011年 | 110篇 |
2010年 | 75篇 |
2009年 | 71篇 |
2008年 | 87篇 |
2007年 | 76篇 |
2006年 | 74篇 |
2005年 | 64篇 |
2004年 | 42篇 |
2003年 | 44篇 |
2002年 | 43篇 |
2001年 | 18篇 |
2000年 | 20篇 |
1999年 | 9篇 |
1998年 | 10篇 |
1997年 | 8篇 |
1996年 | 6篇 |
1995年 | 8篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 4篇 |
1987年 | 6篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 8篇 |
1983年 | 2篇 |
1981年 | 3篇 |
1979年 | 5篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1973年 | 1篇 |
1972年 | 3篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1964年 | 1篇 |
排序方式: 共有1480条查询结果,搜索用时 12 毫秒
71.
Lavanya Rishi Garima Mittal Rajeev Kumar Agarwal Taruna Sharma 《Indian journal of microbiology》2017,57(3):359-364
In view of emerging drug resistance in pathogens, there is a need to explore alternative strategies to combat infections. Use of probiotics is one such option. In this regard, efficacy of Lactobacillus plantarum has been reported against Staphylococcus aureus. Here, we propose that cell free supernatant (CFS) of Lactobacillus paraplantarum when used in combination with conventional antibiotics viz. ampicillin and oxacillin [to which the methicillin resistant Staphylococcus aureus (MRSA) strains were originally resistant] reduce the minimum inhibitory concentrations of these antibiotics, rendering the combination either synergistic or additive against the tested MRSA strain. The anti-staphylococcal activity was observed to be due to organic acids (acetic acid and lactic acid as confirmed by HPLC analysis) present in the CFS, as neutralization of the CFS with an alkali, sodium hydroxide (NaOH), caused the complete abrogation of its activity. The role of H2O2 and bacteriocin present in the CFS was also ruled out. The findings of this study suggest that cell free supernatant and ampicillin/oxacillin combination(s) might help in rejuvenating the use of conventional anti-staphylococcal antibiotics for the treatment of multi-drug resistant strains. 相似文献
72.
Advances in Arachis genomics for peanut improvement 总被引:3,自引:0,他引:3
Pandey MK Monyo E Ozias-Akins P Liang X Guimarães P Nigam SN Upadhyaya HD Janila P Zhang X Guo B Cook DR Bertioli DJ Michelmore R Varshney RK 《Biotechnology advances》2012,30(3):639-651
Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to the tetraploid; cultivated peanut, recent polyploidization combined with self pollination, and the narrow genetic base of the primary genepool have resulted in low genetic diversity that has remained a major bottleneck for genetic improvement of peanut. Harnessing the rich source of wild relatives has been negligible due to differences in ploidy level as well as genetic drag and undesirable alleles for low yield. Lack of appropriate genomic resources has severely hampered molecular breeding activities, and this crop remains among the less-studied crops. The last five years, however, have witnessed accelerated development of genomic resources such as development of molecular markers, genetic and physical maps, generation of expressed sequenced tags (ESTs), development of mutant resources, and functional genomics platforms that facilitate the identification of QTLs and discovery of genes associated with tolerance/resistance to abiotic and biotic stresses and agronomic traits. Molecular breeding has been initiated for several traits for development of superior genotypes. The genome or at least gene space sequence is expected to be available in near future and this will further accelerate use of biotechnological approaches for peanut improvement. 相似文献
73.
Maiti K Li JH Wang AF Acharjee S Kim WP Im WB Kwon HB Seong JY 《Molecules and cells》2003,16(2):173-179
Recently, we identified three types of non-mammalian gonadotropin-releasing hormone receptors (GnRHR) in the bullfrog (designated bfGnRHR-1-3), and a mammalian type-II GnRHR in green monkey cell lines (denoted gmGnRHR-2). All these receptors responded better to GnRH-II than GnRH-I, while mammalian type-I GnRHR showed greater sensitivity to GnRH-I than GnRH-II. In the present study, we designed new GnRH-II analogs and examined whether they activated or inhibited non-mammalian and mammalian type-II GnRHRs. [D-Ala6]GnRH-II, with D-Ala substituted for Gly6 in GnRH-II, increased inositol phosphate (IP) production in cells stably expressing non-mammalian GnRHRs more effectively than native GnRH-II. However, it exhibited lower activity for mammalian type-I GnRHR than GnRH-I itself. Trptorelix-1, a GnRH-II antagonist, inhibited GnRH-induced IP production in cells expressing non-mammalian GnRHRs more effectively than Cetrorelix, a GnRH-I antagonist. Trptorelix-1, however, had lower potency for mammalian type-I GnRHR than Cetrorelix. Ligand-receptor binding assays revealed that [D-Ala6]GnRH-II and Trptorelix-1 have higher affinities for non-mammalian GnRHRs but lower affinities for mammalian type-I GnRHR than GnRH-II and Cetrorelix, respectively. Moreover, [D-Ala6]GnRH-II and Trptorelix-1 had a higher affinity for gmGnRHR-2 than GnRH-II and Cetrorelix, respectively. These results indicate that [D-Ala6]GnRH-II and Trptorelix-1 are highly effective agonist and antagonist, respectively, for non-mammalian and type-II mammalian GnRHRs. 相似文献
74.
Modeling thrombus growth in pathological flows allows evaluation of risk under patient-specific pharmacological, hematological, and hemodynamical conditions. We have developed a 3D multiscale framework for the prediction of thrombus growth under flow on a spatially resolved surface presenting collagen and tissue factor (TF). The multiscale framework is composed of four coupled modules: a Neural Network (NN) that accounts for platelet signaling, a Lattice Kinetic Monte Carlo (LKMC) simulation for tracking platelet positions, a Finite Volume Method (FVM) simulator for solving convection-diffusion-reaction equations describing agonist release and transport, and a Lattice Boltzmann (LB) flow solver for computing the blood flow field over the growing thrombus. A reduced model of the coagulation cascade was embedded into the framework to account for TF-driven thrombin production. The 3D model was first tested against in vitro microfluidics experiments of whole blood perfusion with various antiplatelet agents targeting COX-1, P2Y1, or the IP receptor. The model was able to accurately capture the evolution and morphology of the growing thrombus. Certain problems of 2D models for thrombus growth (artifactual dendritic growth) were naturally avoided with realistic trajectories of platelets in 3D flow. The generalizability of the 3D multiscale solver enabled simulations of important clinical situations, such as cylindrical blood vessels and acute flow narrowing (stenosis). Enhanced platelet-platelet bonding at pathologically high shear rates (e.g., von Willebrand factor unfolding) was required for accurately describing thrombus growth in stenotic flows. Overall, the approach allows consideration of patient-specific platelet signaling and vascular geometry for the prediction of thrombotic episodes. 相似文献
75.
A novel antioxidant and antiapoptotic role of omeprazole to block gastric ulcer through scavenging of hydroxyl radical 总被引:13,自引:0,他引:13
Biswas K Bandyopadhyay U Chattopadhyay I Varadaraj A Ali E Banerjee RK 《The Journal of biological chemistry》2003,278(13):10993-11001
The mechanism of the antiulcer effect of omeprazole was studied placing emphasis on its role to block oxidative damage and apoptosis during ulceration. Dose-response studies on gastroprotection in stress and indomethacin-induced ulcer and inhibition of pylorus ligation-induced acid secretion indicate that omeprazole significantly blocks gastric lesions at lower dose (2.5 mg/kg) without inhibiting acid secretion, suggesting an independent mechanism for its antiulcer effect. Time course studies on gastroprotection and acid reduction also indicate that omeprazole almost completely blocks lesions at 1 h when acid inhibition is partial. The severity of lesions correlates well with the increased level of endogenous hydroxyl radical (*OH), which when scavenged by dimethyl sulfoxide causes around 90% reduction of the lesions, indicating that *OH plays a major role in gastric damage. Omeprazole blocks stress-induced increased generation of *OH and associated lipid peroxidation and protein oxidation, indicating that its antioxidant role plays a major part in preventing oxidative damage. Omeprazole also prevents stress-induced DNA fragmentation, suggesting its antiapoptotic role to block cell death during ulceration. The oxidative damage of DNA by *OH generated in vitro is also protected by omeprazole or its analogue, lansoprazole. Lansoprazole when incubated in a *OH-generating system scavenges *OH to produce four oxidation products of which the major one in mass spectroscopy shows a molecular ion peak at m/z 385, which is 16 mass units higher than that of lansoprazole (m/z 369). The product shows no additional aromatic proton signal for aromatic hydroxylation in (1)H NMR. The product absorbing at 278 nm shows no alkaline shift for phenols, thereby excluding the formation of hydroxylansoprazole. The product is assigned to lansoprazole sulfone formed by the addition of one oxygen atom at the sulfur center following attack by the *OH. Thus, omeprazole plays a significant role in gastroprotection by acting as a potent antioxidant and antiapoptotic molecule. 相似文献
76.
77.
P Enes S Panserat S Kaushik A Oliva-Teles 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2008,149(1):80-86
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release. 相似文献
78.
Satyajeet Das Sagar Batra Pramodkumar P. Gupta Mukesh Kumar Vijay Kumar Srivastava Anupam Jyoti Nagendra Singh Sanket Kaushik 《Journal of molecular recognition : JMR》2019,32(11)
Enterococcus faecalis is a gram‐positive, rod‐shape bacteria responsible for around 65% to 80% of all enterococcal nosocomial infections. It is multidrug resistant (MDR) bacterium resistant to most of the first‐line antibiotics. Due to the emergence of MDR strains, there is an urgent need to find novel targets to develop new antibacterial drugs against E. faecalis. In this regard, we have identified naphthoate synthase (1,4‐dihydroxy‐2‐naphthoyl‐CoA synthase, EC: 4.1.3.36; DHNS) as an anti‐E. faecalis target, as it is an essential enzyme for menaquinone (vitamin K2) synthetic pathway in the bacterium. Thus, inhibiting naphtholate synthase may consequently inhibit the bacteria's growth. In this regard, we report here cloning, expression, purification, and preliminary structural studies of naphthoate synthase along with in silico modeling, molecular dynamic simulation of the model and docking studies of naphthoate synthase with quercetin, a plant alkaloid. Biochemical studies have indicated quercetin, a plant flavonoid as the potential lead compound to inhibit catalytic activity of EfDHNS. Quercetin binding has also been validated by spectrofluorimetric studies in order to confirm the bindings of the ligand compound with EfDHNS at ultralow concentrations. Reported studies may provide a base for structure‐based drug development of antimicrobial compounds against E. faecalis. 相似文献
79.
A postprandial increase in ammonia nitrogen excretion and oxygen consumption rates was observed in juvenile pike fed a natural diet or an artificial dry diet. Specific growth rate of natural diet fed pike (2.4%) was lower than that of pike fed the artificial diet (3.1%). Fifty per cent of ingesta was evacuated within 5–6 h in pike of 25 mg body weight and 9–10 h in those weighing 150mg. Daily nitrogen excretion rates were related to body weight. Respiratory quotient and energy retention efficiency were affected by the nature of the diet ingested by pike. Parameters of the energy balance (losses, retention, increment due to feeding) were related to energy intake. 相似文献
80.