首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   10篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   16篇
  2017年   1篇
  2016年   13篇
  2015年   11篇
  2014年   15篇
  2013年   12篇
  2012年   18篇
  2011年   18篇
  2010年   15篇
  2009年   7篇
  2008年   13篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   11篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1967年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
111.
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.  相似文献   
112.
Defects in organellar translation are the underlying cause of a number of mitochondrial diseases, including diabetes, deafness, encephalopathy, and other mitochondrial myopathies. The most common causes of these diseases are mutations in mitochondria-encoded tRNAs. It has recently become apparent that mutations in nuclear-encoded components of the mitochondrial translation machinery, such as aminoacyl-tRNA synthetases (aaRSs), can also lead to disease. In some cases, mutations can be directly linked to losses in enzymatic activity; however, for many, their effect is unknown. To investigate how aaRS mutations impact function without changing enzymatic activity, we chose nonsynonymous single-nucleotide polymorphisms (nsSNPs) that encode residues distal from the active site of human mitochondrial phenylalanyl-tRNA synthetase. The phenylalanyl-tRNA synthetase variants S57C and N280S both displayed wild-type aminoacylation activity and stability with respect to their free energies of unfolding, but were less stable at low pH. Mitochondrial proteins undergo partial unfolding/refolding during import, and both S57C and N280S variants retained less activity than wild type after refolding, consistent with their reduced stability at low pH. To examine possible defects in protein folding in other aaRS nsSNPs, we compared the refolding of the human mitochondrial leucyl-tRNA synthetase variant H324Q to that of wild type. The H324Q variant had normal activity prior to unfolding, but displayed a refolding defect resulting in reduced aminoacylation compared to wild type after renaturation. These data show that nsSNPs can impact mitochondrial translation by changing a biophysical property of a protein (in this case refolding) without affecting the corresponding enzymatic activity.  相似文献   
113.
Chronic neuropathic pain is a disabling condition observed in large number of individuals following spinal cord injury (SCI). Recent progress points to an important role of neuroinflammation in the pathogenesis of central neuropathic pain. The focus of the present study is to investigate the role of proinflammatory molecules IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 in chronic neuropathic pain in a rodent model of SCI. Rats were subjected to spinal cord contusion using a controlled linear motor device with an injury epicenter at T10. The SCI rats had severe impairment in locomotor function at 7 days post-injury as assessed by the BBB score. The locomotor scores showed significant improvement starting at day 14 and thereafter showed no further improvement. The Hargreaves’ test was used to assess thermal hyperalgesia for hindpaw, forepaw and tail. A significant reduction in withdrawal latency was observed for forepaw and tail of SCI rats at days 21 and 28, indicating the appearance of thermal hyperalgesia. Changes in expression of mRNAs for IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 were assessed using real-time polymerase chain reaction in spinal cord including the injury epicenter along with regions above and below the level of lesion at day 28 post-injury. A significant increase was observed in the expression of MCP-1, TNF-α, TIMP-1 and IL-1β in the injury epicenter, whereas only TIMP-1 was upregulated in the area below the injury epicenter. The results of the study suggest that prolonged upregulation of inflammatory mediators might be involved in chronic neuropathic pain in SCI, and that TIMP-1 may play a role in maintenance of chronic below level pain.  相似文献   
114.
Abstract

The UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (MurG) is located in plasma membrane which plays a crucial role for peptidoglycan biosynthesis in Gram-negative bacteria. Recently, this protein is considered as an important and unique drug target in Acinetobacter baumannii since it plays a key role during the synthesis of peptidoglycan as well as which is not found in Homo sapiens. In this study, initially we performed comparative protein modeling approach to predict the three-dimensional model of MurG based on crystal structure of UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (PDB ID: 1F0K) from E.coli K12. MurG model has two important functional domains located in N and C- terminus which are separated by a deep cleft. Active site residues are located between two domains and they are Gly20, Arg170, Gly200, Ser201, Gln227, Phe254, Leu275, Thr276, and Glu279 which play essential role for the function of MurG. In order to inhibit the function of MurG, we employed the High Throughput Virtual Screening (HTVS) and docking techniques to identify the promising molecules which will further subjected into screening for computing their drug like and pharmacokinetic properties. From the HTVS, we identified 5279 molecules, among these, 12 were passed the drug-like and pharmacokinetic screening analysis. Based on the interaction analysis in terms of binding affinity, inhibition constant and intermolecular interactions, we selected four molecules for further MD simulation to understand the structural stability of protein-ligand complexes. All the analysis of MD simulation suggested that ZINC09186673 and ZINC09956120 are identified as most promising putative inhibitors for MurG protein in A. baumannii.

Communicated by Ramaswamy H. Sarma  相似文献   
115.
Autophagy in the cellular energetic balance   总被引:1,自引:0,他引:1  
Autophagy mediates the degradation of cellular components in lysosomes, assuring removal of altered or dysfunctional proteins and organelles. Autophagy is not only activated in response to cellular damage; in fact, one of its strongest and better-characterized stimuli is starvation. Activation of autophagy when nutrients are scarce allows cells to reutilize their own constituents for energy. Besides protein breakdown, autophagy also contributes to the mobilization of diverse cellular energy stores. This recently discovered interplay between autophagy and lipid and carbohydrate metabolism reveals the existence of a dynamic feedback between autophagy and cellular energy balance.  相似文献   
116.
The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10−8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1–6.1, p = 3×10−23). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8–3.0, p = 3×10−16) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans.  相似文献   
117.
Chromium has been recognized as an essential trace element that plays an important role in carbohydrate metabolism. However, the molecular mechanisms involved in its action are not clear. This study was undertaken to understand the mechanism of chromium action in experimental diabetes. Streptozotocin-induced diabetic animals were administered chromium as chromium picolinate (CrP) at a daily dose of 1 mg/kg body weight for a period of 4 weeks. It was observed that chromium complexed with picolinate was effective in lowering plasma glucose levels as well as was able to alleviate polyphagia, polydipsia, and weight loss in diabetic animals. Administration of chromium was also found to normalize glycogen content in liver of diabetic animals to near control levels. The reduction in plasma glucose levels by chromium was accompanied by increase in activity of glycolytic enzymes (e.g., glucokinase, phosphofructokinase, and pyruvate kinase) and by suppression in activity of gluconeogenic enzymes (e.g., glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) in liver. Hepatic glucose uptake was found to be increased by chromium supplementation as demonstrated by decrease in Km and increase in Vmax values in diabetic animals. Chromium levels were lower in the liver of diabetic rats when compared with that of control rats. A negative correlation was observed between plasma glucose and chromium concentration in patients with diabetes. The data suggests that chromium supplementation as CrP is beneficial in correcting hyperglycemia, implying that the modulation of the glucose metabolism by chromium may be therapeutically beneficial in the treatment of diabetes.  相似文献   
118.
Many complex mechanisms in immunological studies cannot be measured by experiments, but can be analyzed by mathematical simulations. Using theoretical modeling techniques, general principles of host–pathogen system interactions can be explored and clinical treatment schedules can be optimized to lower the microbial toxin burden and side effects in the host system. In this study, we use a computational modeling technique that aims to explain the host–pathogen interactions and suggests how the host system tries to survive from the pathogen attack. The method generates data on reaction fluxes in a pathway at steady state. A set of constraints is incorporated and an objective function for the minimization of toxin expression, with respect to some parameters such as concentration of signaling molecules, is formulated. We have integrated the toxin expression regulatory pathway in Clostridium difficile, apoptosis and mitogen‐activated protein kinase pathways in an infected host (Homo sapiens). We have found that due to the minimization of the toxin expression, the signal flow values for most of the survival genes are at the higher side, whereas it is the reverse for most of the proapoptotic genes. We have observed increased signal flow values of the molecules for extracellular regulated kinase as compared with the molecules present in c‐Jun NH2‐terminal kinase/p38 pathways. In light of these observations, we can hypothesize that lower toxin level in a pathogen implies higher chance of host survival. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
119.
Earlier studies from our laboratory have shown myocardial dysfunction subsequent to chronic O(3) exposure in rats may be associated with a decrease in antioxidant reserve and increased activity of inflammatory mediators. The present study tested the hypothesis that O(3)-induced cardiac dysfunction in healthy adult rats may be due to changes in caveolin-1 and caveolin-3 levels. Sprague-Dawley rats were exposed 8?h/day for 28 and 56?days to filtered air or 0.8?ppm O(3). In order to assess the chronic effects to O(3), in vivo cardiac function was assessed by measuring LVDP, 24?h after termination of O(3) exposure. Compared to rats exposed to filtered air, LVDP values significantly decreased in all O(3)-exposed animals. This attenuation of cardiac function was associated with increased myocardial TNF-α levels and decreased myocardial activities of superoxidase dismutase. Progressive increases in the expression of myocardial TNF-α in 28?days and 56?days O(3)-exposed animals were followed by decreases in cardiac caveolin-1 levels. On the other hand, differential changes in the expression of caveolin-3 in hearts from 28 and 56?days O(3)-exposed animals were independent of intra-cardiac TNF-α levels. These novel findings suggest the interesting possibility that a balance between caveolin-1 and caveolin-3 may be involved in O(3)-mediated cardiac toxicity.  相似文献   
120.
A number of advancements have been made toward identifying the risk factors associated with cardiovascular disease (CVD) and have resulted in a decline in mortality. However, many patients with cardiac disease show no established previous risk. Thus, it appears that other unknown factors contribute to the pathophysiology of CVD. Out of 350,000 sudden cardiac deaths each year in the United States, 60,000 deaths have been linked to air pollution, suggesting a detrimental role of environmental pollutants in the development of CVD. This study tested the hypothesis that chronic ozone (O(3)) exposure diminishes myocardial function in healthy population. Male Sprague-Dawley rats were exposed 8 h/day for 28 and 56 days to filtered air or 0.8 ppm O(3). In vivo cardiac function was assessed by measuring LVDP, +dP/dt, -dP/dt, and LVEDP 24 h after termination of the O(3) exposure. Compared to rats exposed to filtered air, LVDP, +dP/dt, and -dP/dt were significantly decreased, and LVEDP was significantly increased in O(3) exposed animals. This attenuation of cardiac function was associated with increased myocardial TNF-alpha levels and lipid peroxidation as well as decreased myocardial activities of superoxidase dismutase and interleukin-10 levels. These novel findings suggest myocardial dysfunction subsequent to chronic O(3) exposure in normal adult rats may be associated with a decrease in antioxidant reserve and with an increased production of inflammatory mediators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号