首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   25篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   14篇
  2018年   6篇
  2017年   16篇
  2016年   18篇
  2015年   16篇
  2014年   23篇
  2013年   23篇
  2012年   34篇
  2011年   24篇
  2010年   19篇
  2009年   15篇
  2008年   20篇
  2007年   15篇
  2006年   17篇
  2005年   18篇
  2004年   7篇
  2003年   14篇
  2002年   8篇
  2001年   11篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1996年   4篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有396条查询结果,搜索用时 62 毫秒
331.
Dynamic equilibrium between mitochondrial fission and mitochondrial fusion serves as an important quality control system within cells ensuring cellular vitality and homeostasis. Viruses often target mitochondrial dynamics as a part of their obligatory cellular reprogramming. The present study was undertaken to assess the status and regulation of mitochondrial dynamics during rotavirus infection. Distinct fragmentation of mitochondrial syncytia was observed during late hours of RV (SA11, Wa, A5‐13) infection. RV nonstructural protein 4 (NSP4) was identified as the viral trigger for disrupted mitochondrial morphology. Severance of mitochondrial interconnections was found to be a dynamin‐related protein 1 (Drp1)‐dependent process resulting synergistically from augmented mitochondrial fission and attenuated mitochondrial fusion. Cyclin‐dependent kinase 1 was subsequently identified as the cellular kinase responsible for fission‐active Ser616 phosphorylation of Drp1. In addition to its positive role in mitochondrial fission, Drp1 also resulted in mitochondrial translocation of E3‐ubiquitin ligase Parkin leading to degradation of mitochondrial fusion protein Mitofusin 1. Interestingly, RV‐NSP4 was found to interact with and be involved in recruiting fission‐active pool of Serine 616 phosphoDrp1 (Ser616 pDrp1) to mitochondria independent of accessory adaptors Mitochondrial fission factor and Fission protein 1 (Fis1). Inhibition of either Drp1 or Ser616 pDrp1 resulted in significant decrease in RV‐NSP4‐induced intrinsic apoptotic pathway. Overall, this study underscores an efficient strategy utilised by RV to couple apoptosis to mitochondrial fission facilitating dissemination of viral progeny.  相似文献   
332.
Antifreeze proteins (AFPs) are known to polypeptide components formed by certain plants, animals, fungi and bacteria which support to survive in sub-zero temperature. Current study highlighted the seven different antifreeze proteins of fish Ocean pout (Zoarces americanus), in which protein (amino acids sequence) were collected from National Centre for Biotechnology Information and finely characterized using several in silico tools. Such biocomputational techniques applied to figure out the physicochemical, functional and conformational characteristics of targeted AFPs. Multiple physicochemical properties such as Isoelectric Point, Extinction Coefficient and Instability Index, Aliphatic Index, Grand Average Hydropathy were calculated and analysed by ExPASy-ProtParam prediction web server. EMBOSS: pepwheel online tool was used to represent the protein sequences in a helical form. The primary structure analysis shows that most of the AFPs are hydrophobic in nature due to the high content of non-polar residues. The secondary structure of these proteins was calculated using SOPMA tool. SOSUI server and CYS_REC program also run for ideal prediction of transmembrane helices and disulfide bridges of experimental proteins respectively. The modelling of 3D structures of seven desired AFPs were executed by the homology modelling programmes; SWISS MODEL and ProSA web server. UCSF Chimera, Antheprot 3D, PyMOL and RAMPAGE were used to visualize and analysis of the structural variation of the predicted protein model. MEGA7.0.9 software used to know the phylogenetic relationship among these AFPs. These models offered excellent and reliable baseline information for functional characterization of the experimentally derived protein domain composition by using the advanced tools and techniques of Computational Biology.  相似文献   
333.
The 3-substituted phenyl-5-isoxazolecarboxaldehydes have been identified as activated aldehydes for the generation of isoxazole-based combinatorial libraries on solid phase through automation. Three highly functionalized isoxazole-based libraries comprising of 32, 96 and 45 compounds each have been synthesized in parallel format using Baylis Hillman reaction, Michael addition, reductive amination and alkylation reactions. With an objective of lead generation all the three libraries were evaluated for their antithrombin activity in vivo.  相似文献   
334.
Nitrene transfer reactions to various hydrocarbon molecules can be efficiently catalyzed by Fe complexes through a mechanism reminiscent of the oxygen transfer function of oxygenase enzymes. Such enzymes exhibit a high-valent iron oxo Fe(IV)?=?O as the active species, and it has also been proposed that an analogous species, i.e., Fe(IV)?=?NR (NR being the nitrene group) is responsible for the nitrene transfer activity. We describe here the influence of the Fe(IV) coordination sphere on some key parameters for nitrene transfer efficacy, such as the spin state of the Fe(IV) cation, the electronic affinity, and the bond dissociation energy of the NHR moiety. We explore here the electronic properties of Fe(IV)?=?NTs (NTs?=?tolylsulfonylimido group) mononuclear complexes with ligands involving phenolate and nitrogen donor groups, as catalytic properties with such ligands have been found to be quite promising. Six tetradentate ligands were studied, which derive from three different scaffolds: 2-methylenepyridine-N,N-bis(2-methylene-4,6-dichlorophenol) and 2-methylenepyridine-N,N-bis(2-methylene-4,6-dimethylphenol), N,N-dimethyl-N’,N’-bis(2-methylene-4,6-dichlorophenol) ethylenediamine, and N,N-dimethyl-N’,N’- bis(2-methylene-4,6-dimethylphenol) ethylenediamine, N,N’-bis(2-methylene-4,6-dichlorophenol)-N,N’-dimethyl-1,2-diaminoethane and N,N’-bis(2-methylene-4,6-dimethylphenol)-N,N’-dimethyl-1,2-diaminoethane. Thanks to thorough DFT computations, we present some rationalization of the electronic properties of the resulting Fe(IV)?=?NTs complexes in relation to their coordination sphere and compare them to other Fe(IV) nitrene active species. We show in particular the important role of the anionic character and strong π-donation of the phenolate groups.  相似文献   
335.
Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and belowground C accumulation rates in mangrove forests from the Republic of Palau and Vietnam to examine how diversity (high-Vietnam vs. low-Palau), land use, and location (fringe vs. interior) might influence these parameters. Land use in this study was identified as disturbance and restoration for all mangrove forests sampled in Palau and Vietnam, respectively. Vertical accretion rates were significantly greater in Vietnam (2.44 ± 1.38 cm/year) than Palau mangrove forests (0.47 ± 0.08 cm/year; p < 0.001, F1,17 = 24.96). Vertical accretion rates were positively correlated to diversity (R = 0.43, p < 0.05). However, stronger correlations of accretion to bulk density (R = 0.64, p < 0.01) and significantly higher bulk densities in Vietnamese (0.67 ± 0.04 g/cm3) than Palau mangroves (0.30 ± 0.03 g/cm3; p < 0.001, F1,17 = 54.4) suggests that suspended sediments played a greater role in mangrove forest floor maintenance relative to sea level rise. Average vertical accretion rates were similar between naturally colonized (1.01 ± 0.10 cm/year) and outplanted sites (1.06 ± 0.05 cm/year) and between fringe (1.06 ± 0.12 cm/year) and interior mangrove (0.99 ± 0.09 cm/year) in Vietnam. In Palau, vertical accretion rates did not differ between disturbed (0.42 ± 0.11 cm/year) and undisturbed (0.51 ± 0.13 cm/year) mangrove forests and were higher in fringe (0.61 ± 0.15 cm/year) than interior sites (0.33 ± 0.09 cm/year; p = 0.1, F1,7 = 3.45). Belowground C accumulation rates did not differ between any factors examined. C accumulation rates (69–602 gC/m2/year) were similar to those reported elsewhere in the literature and suggest that intact coastal ecosystems play an important role in the global C cycle, sequestering C at rates that are 10–20× greater than upland forests. Assuming vertical accretion rates measured using 210Pb are an effective proxy for surface elevation, the Vietnamese and Palauan mangroves appear to be keeping up with current rates of sea level rise.  相似文献   
336.
Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo.  相似文献   
337.
Loss of E-cadherin and epithelial to mesenchymal transition (EMT) are key steps in cancer progression. Reactive oxygen species (ROS) play significant roles in cellular physiology and homeostasis. Roles of E-cadherin (CDH1), EMT and ROS are intriguingly illustrated in many cancers without focusing their collective concert during cancer progression. We report that hydrogen peroxide (H2O2) treatment modulate CDH1 gene expression by epigenetic modification(s). Sublethal dosage of H2O2 treatment decrease E-cadherin, increase DNMT1, HDAC1, Snail, Slug and enrich H3K9me3 and H3K27me3 in the CDH1 promoter. The effect of H2O2 was attenuated by ROS scavengers; NAC, lupeol and beta-sitosterol. DNMT inhibitor, AZA prevented the H2O2 induced promoter-CpG-island methylation of CDH1. Treatment of cells with U0126 (inhibitor of ERK) reduced the expression of DNMT1, Snail and Slug, increased CDH1. This implicates that CDH1 is synergistically repressed by histone methylation, DNA methylation and histone deacetylation mediated chromatin remodelling and activation of Snail and Slug through ERK pathway. Increased ROS leads to activation of epigenetic machineries and EMT activators Snail/Slug which in their course of action inactivates CDH1 gene and lack of E-cadherin protein promotes EMT in breast cancer cells. ROS and ERK signaling facilitate epigenetic silencing and support the fact that subtle increase of ROS above basal level act as key cell signaling molecules. Free radical scavengers, lupeol and beta-sitosterol may be tested for therapeutic intervention of breast cancer. This work broadens the amplitude of epigenome and open avenues for investigations on conjoint effects of canonical and intrinsic metabolite signaling and epigenetic modulations in cancer.  相似文献   
338.
One of the limitations of fluorescence probe molecules during biomedical estimation is their lack of ability to selectively determine the targeted species. To overcome this there have been various approaches that involve attaching a functional group or aptamers to the fluorescence probe. However, encapsulating probe molecules in a matrix using nanotechnology can be a viable and easier method. Curcumin (Cur) as a fluorescence marker cannot distinguish DNA and RNA. This research reports a novel selective approach involving the use of nanocapsules composed of liposomal curcumin coated with chitosan for the selective detection of RNA molecules using a fluorescence method. The increase in RNA concentration enhanced the electrostatic interaction between the negatively charge surface of RNA and the positively charged nanocapsule, which was further verified by zeta potential measurement. This method had a low limit of detection (36 ng/ml) and higher linear dynamic ranges compared with other studies found in the literature. Moreover, the method was not affected by DNA and was selective for the detection of RNA molecules for which the site of interaction was confined only to uracil. The selectivity for RNA molecules towards other analogues species was also examined and recovery range found was between 99 and 100.33%.  相似文献   
339.
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGu H 2 0) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.  相似文献   
340.
G-quadruplexes (GQs), a non-canonical form of DNA, are receiving a huge interest as target sites for potential applications in antiviral and anticancer drug treatments. The biological functions of GQs can be controlled by specifically binding proteins known as GQs binding proteins. Some of the GQs binding proteins contain an arginine and glycine-rich sequence known as RGG peptide. Despite the important role of RGG, the GQs-RGG interaction remains poorly understood. By single molecule measurements, the interaction dynamics can be determined in principle. However, the RGG–GQs interaction occurs at micromolar concentrations, making conventional single-molecule experiments impossible with a diffraction-limited confocal microscope. Here, we use a 120 nm zero-mode waveguide (ZMW) nanoaperture to overcome the diffraction limit. The combination of dual-color fluorescence cross-correlation spectroscopy (FCCS) with FRET is used to unveil the interaction dynamics and measure the association and dissociation rates. Our data show that the RGG–GQs interaction is predominantly driven by electrostatics but that a specific affinity between the RGG sequence and the GQs structure is preserved. The single molecule approach at micromolar concentration is the key to improve our understanding of GQs function and develop its therapeutic applications by screening a large library of GQs-targeting peptides and proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号