首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   25篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   14篇
  2018年   6篇
  2017年   16篇
  2016年   18篇
  2015年   16篇
  2014年   23篇
  2013年   23篇
  2012年   34篇
  2011年   24篇
  2010年   19篇
  2009年   15篇
  2008年   20篇
  2007年   15篇
  2006年   17篇
  2005年   18篇
  2004年   7篇
  2003年   14篇
  2002年   8篇
  2001年   11篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1996年   4篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有396条查询结果,搜索用时 563 毫秒
271.
272.
The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.  相似文献   
273.

Background

The phylogeny of the indigenous Indian-specific mitochondrial DNA (mtDNA) haplogroups have been determined and refined in previous reports. Similar to mtDNA superhaplogroups M and N, a profusion of reports are also available for superhaplogroup R. However, there is a dearth of information on South Asian subhaplogroups in particular, including R8. Therefore, we ought to access the genealogy and pre-historic expansion of haplogroup R8 which is considered one of the autochthonous lineages of South Asia.

Methodology/Principal Findings

Upon screening the mtDNA of 5,836 individuals belonging to 104 distinct ethnic populations of the Indian subcontinent, we found 54 individuals with the HVS-I motif that defines the R8 haplogroup. Complete mtDNA sequencing of these 54 individuals revealed two deep-rooted subclades: R8a and R8b. Furthermore, these subclades split into several fine subclades. An isofrequency contour map detected the highest frequency of R8 in the state of Orissa. Spearman''s rank correlation analysis suggests significant correlation of R8 occurrence with geography.

Conclusions/Significance

The coalescent age of newly-characterized subclades of R8, R8a (15.4±7.2 Kya) and R8b (25.7±10.2 Kya) indicates that the initial maternal colonization of this haplogroup occurred during the middle and upper Paleolithic period, roughly around 40 to 45 Kya. These results signify that the southern part of Orissa currently inhabited by Munda speakers is likely the origin of these autochthonous maternal deep-rooted haplogroups. Our high-resolution study on the genesis of R8 haplogroup provides ample evidence of its deep-rooted ancestry among the Orissa (Austro-Asiatic) tribes.  相似文献   
274.
We study the influence of truncating the electrostatic interactions in a fully hydrated pure dipalmitoylphosphatidylcholine (DPPC) bilayer through 20 ns molecular dynamics simulations. The computations in which the electrostatic interactions were truncated are compared to similar simulations using the particle-mesh Ewald (PME) technique. All examined truncation distances (1.8-2.5 nm) lead to major effects on the bilayer properties, such as enhanced order of acyl chains together with decreased areas per lipid. The results obtained using PME, on the other hand, are consistent with experiments. These artifacts are interpreted in terms of radial distribution functions g(r) of molecules and molecular groups in the bilayer plane. Pronounced maxima or minima in g(r) appear exactly at the cutoff distance indicating that the truncation gives rise to artificial ordering between the polar phosphatidyl and choline groups of the DPPC molecules. In systems described using PME, such artificial ordering is not present.  相似文献   
275.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   
276.
We analyzed gene expression of MBD1, MBD2, MBD3, MBD4, and MeCP2 and protein expression of MBD1, MBD2, and MeCP2 in prostate cancer cell lines, benign prostate epithelium (BPH-1) cell line, 49 BPH tissues, and 46 prostate cancer tissues. The results of this study demonstrate that MBD2 gene is expressed in all samples and MeCP2 gene is expressed in all cancer cell lines but not in BPH-1 cell line. However, there was no protein expression for MBD2 and MeCP2 in cancer cell lines and cancer tissues. For CXXC sequence containing MBD1, both protein and mRNA were expressed in cancer cell lines, cancer tissues, BPH-1 cell line, and BPH tissues. We observed that, in BPH tissues and low-grade cancer tissues, MBD1 protein expression was very high and gradually decreased with increase of cancer grade. Treatment of cancer cell lines with proteasome inhibitor (MG-132) did not restore expression of MBD2 and MeCP2 proteins. When prostate cancer cell lines were treated with hypomethylating agent, 5-aza-2(')-deoxycytidine (DNMT inhibitor), HDAC1 and HDAC2 expression was decreased. This is the first report demonstrating that CXXC sequence containing MBD1 is overexpressed and can be the major factor of hypermethylated chromatin segments through HDAC1/2 translocation and histone deacetylation in human prostate cancer.  相似文献   
277.
The stereocontrolled reduction of 3-aryl-5-acetylisoxazolines (1) to the corresponding alcohols (2 and 3) in the presence of four different yeast strains, recognized as Baker's yeast (commercial), Candida krusei (ATCC 14243), Pichia farinosa (NRRL Y110) and Sacchromyces sp. (soil isolate) have been attempted. The C. krusei was found to be diastereoselective for the (R)-1 while the Sacchromyces sp. led to complete reduction to yield the RS- and SS-alcohol in 1:1 ratio at 10 g/L scale.  相似文献   
278.
Uranyl nitrate inhibited root growth of Allium cepa at > or = 25 microM concentration. Fluorimetric analysis of metal uptake indicated the entry and accumulation of uranium into the root cell. Uranyl nitrate was neither clastogenic nor aneugenic as it failed to induce micronuclei significantly, but between 25 and 100 microM concentration, it increased significantly the frequency of sister chromatid exchange over that of control, implying its genotoxicity that possibly interfered with DNA replication and/or repair process.  相似文献   
279.
Histone deacetylase and DNA methyltransferase in human prostate cancer   总被引:13,自引:0,他引:13  
CpG island hypermethylation and chromatin remodeling play important roles in repression of various genes during malignant transformation. We hypothesized that histone deacetylases (HDACs) and DNA methyltransferases (DNMTase) are associated with prostate cancer and we examined the enzyme activity, gene, and protein expression of HDAC1 and DNMT1 in cell lines and tissues. We found that DNMTase and HDACs activities were two- to threefold higher in cell lines compared to benign prostatic hyperplasia (BPH-1) cell line. Treatment of cells with 5-aza-2'-deoxycytidine decreased the activity of HDAC and DNMTase. The mRNA expression of these genes in BPH-1 cells and BPH tissues was lower than that in prostate cancer cells and tissues. HDAC1 and DNMT1 protein expression was higher in prostate cancer compared to BPH. This is the first report to demonstrate that DNMT1 and HDAC1 levels are up-regulated in prostate cancer compared to BPH, suggesting their roles in inactivation of various genes, by DNA-methylation-induced chromatin-remodeling, in prostate cancer.  相似文献   
280.
A membrane bound form of nitric oxide synthase of human erythrocytes that could be activated by insulin was purified to homogeneity by detergent solubilization of the purified membrane preparation of these cells. The purified enzyme (M(r) 230 KD) was found to be composed of one heavy chain (M(r) 135 KD) and one light chain (Mr 95 KD) held together by disulphide bond(s). Scatchard plot analysis of insulin binding to the purified enzyme showed the presence of 2 different populations of the binding sites and the activation were directly related to the hormone binding to the protein. Line weaver Burk plot of the purified enzyme showed that the stimulation of the enzymic activity by insulin was related to the decrease of K(m) with simultaneous increase of V(max). Treatment of the purified enzyme with anti insulin receptor antibody inhibited the activation of the enzyme and the binding of the hormone to the protein. Furthermore NO itself, at low concentration (<0.4 microM) activated the enzyme, but at higher concentration (>0.8 microM) had no effect on the activation. Incubation of the purified enzyme with insulin simultaneously stimulated the tyrosine kinase and nitric oxide synthase activities of the preparations, that could be inhibited by genistein (an inhibitor of tyrosine kinase). These results indicated that the insulin activated nitric oxide synthase could be the insulin receptor itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号