首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   29篇
  国内免费   4篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   8篇
  2016年   9篇
  2015年   18篇
  2014年   14篇
  2013年   11篇
  2012年   27篇
  2011年   15篇
  2010年   15篇
  2009年   6篇
  2008年   21篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1991年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1966年   2篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
91.

Background

Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs) and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need.

Methodology/Principal findings

Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract) was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week.

Conclusions/Significance

Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India.  相似文献   
92.
Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT) encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.  相似文献   
93.
BackgroundRecord linkage integrates records across multiple related data sources identifying duplicates and accounting for possible errors. Real life applications require efficient algorithms to merge these voluminous data sources to find out all records belonging to same individuals. Our recently devised highly efficient record linkage algorithms provide best-known solutions to this challenging problem.MethodWe have developed RLT-S, a freely available web tool, which implements our single linkage clustering algorithm for record linkage. This tool requires input data sets and a small set of configuration settings about these files to work efficiently. RLT-S employs exact match clustering, blocking on a specified attribute and single linkage based hierarchical clustering among these blocks.ResultsRLT-S is an implementation package of our sequential record linkage algorithm. It outperforms previous best-known implementations by a large margin. The tool is at least two times faster for any dataset than the previous best-known tools.ConclusionsRLT-S tool implements our record linkage algorithm that outperforms previous best-known algorithms in this area. This website also contains necessary information such as instructions, submission history, feedback, publications and some other sections to facilitate the usage of the tool.AvailabilityRLT-S is integrated into http://www.rlatools.com, which is currently serving this tool only. The tool is freely available and can be used without login. All data files used in this paper have been stored in https://github.com/abdullah009/DataRLATools. For copies of the relevant programs please see https://github.com/abdullah009/RLATools.  相似文献   
94.
95.
The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum–infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.  相似文献   
96.
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   
97.
Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring ‘nontoxic’ provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F2 mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F2 plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker‐assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties.  相似文献   
98.

Background

Arylamine N-acetyltransferase 2 (NAT2) is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear.

Methodology/Principal Findings

We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential.

Conclusions/Significance

Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants. Overall, our study may provide the structural basis for reduced catalytic activity and protein level, as was experimentally observed for these polymorphisms.  相似文献   
99.
Spinal cord injury induces scar formation causes axonal damage that leads to the degeneration of axonal function. Still, there is no robust conceptual design to regenerate the damaged axon after spinal injury. Therefore, the present study demonstrates that human gingival derived neuronal stem cells (GNSCs) transplants in the injectable caffeic acid bioconjugated hydrogel (CBGH) helps to bridge the cavity and promote the engraftment and repopulation of transplants in the injured spinal tissue. Our study reports that the bioluminescence imaging in vivo imaging system (IVIS) provides a satisfactory progression in CBGH-GNSCs transplants compare to lesion control and CBGH alone. Immune regulators interleukin-6 (IL-6), tumor necrosis factor-α, neutrophil elastase are decreased, IL-10 is increased. Likewise, immunostaining (TAU/TUJ-1, SOX-2/NeuN, MAP-2/PSD93, NSE, S100b, and GFAP) shown repopulated cells. Also, TRA-1-81 expression confirms the absence of immune rejection in the CBGH-GNSCs transplants. However, locomotor recovery test, gene (IL-6, CASPASE3, p14-ARF, VEGF, LCAM, BDNF, NT3, NGN2, TrKc, FGF2, Sox-2, TUJ-1, MAP-2, Nestin, and NeuN) and protein expression (TAU, TUJ-1, SOX-2 MAP-2, PSD93, NeuN, TRA-1-81, GFAP, TAU, and MBP) shows functional improvements in the CBGH-GNSCs group. Further, GABA and glutamine level demonstrates the new synaptic vesicle formation. Hence, the CBGH scaffold enhances GNSCs transplants to restore the injured spinal tissue.  相似文献   
100.
Effect of light intensity and photoperiod on growth, indoleamines and carotenoid production was studied in unicellular green algae D. bardawil. Maximum biomass and carotenoid contents were found when cultures were grown in light (intensity of 2.0 Klux) at a photoperiod of 16/8h light and dark cycle. There was a profound influence of tested photoperiod conditions of light:dark viz. 8:16, 10:14, and 12:12 hr, continuous light on indoleamines (SER and MEL) production as estimated by HPLC and confirmed by mass spectral data obtained from LC-MS-ESI studies. Serotonin level increased from 908 to 1765 pg/g fresh wt with increase in light duration and melatonin level increased from 267 to 584 pg/g fresh wt during increase in dark phase. Carotenoids production was high in continuous light than other tested conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号