首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   29篇
  国内免费   4篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   8篇
  2016年   9篇
  2015年   18篇
  2014年   14篇
  2013年   11篇
  2012年   27篇
  2011年   15篇
  2010年   15篇
  2009年   6篇
  2008年   21篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1991年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1966年   2篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
11.

Introduction

Matrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis.

Methods

For this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis was assessed by measuring the ankle swelling. During the course of the experiments, mice were sacrificed every second day for histological examination of the ankle joints. Ankle sections were evaluated histologically for infiltration of inflammatory cells, pannus tissue formation and bone/cartilage destruction. Semi-quantitative PCR was used to determine MMP-13 expression levels in ankle joints of untreated and K/BxN serum-injected mice.

Results

This study shows that MMP-13 is a regulator of inflammation. We observed increased expression of MMP-13 in ankle joints of WT mice during K/BxN serum-induced arthritis and both K/BxN serum-treated WT and MMP-13–/– mice developed progressive arthritis with a similar onset. However, MMP-13–/– mice showed significantly reduced disease over the whole arthritic period. Ankle joints of WT mice showed severe joint destruction with extensive inflammation and erosion of cartilage and bone. In contrast, MMP-13–/– mice displayed significantly decreased severity of arthritis (50% to 60%) as analyzed by clinical and histological scoring methods.

Conclusions

MMP-13 deficiency acts to suppress the local inflammatory responses. Therefore, MMP-13 has a role in the pathogenesis of arthritis, suggesting MMP-13 is a potential therapeutic target.  相似文献   
12.
Abstract

Pierisin-5 is a DNA dependent ADP ribosyltransferase (ADRT) protein from the larvae of Indian cabbage white butterfly, Pieris canidia. Interestingly, Pierisin-5 ADP-ribosylates the DNA as a substrate, but not the protein and subsequently persuades apoptotic cell death in human cancer cells. This has led to the investigation on the DNA binding activity of Pierisin-5 using in vitro and in silico approaches in the present study. However, both the structure and the mechanism of ADP-ribosylation of pierisin-5 are unknown. In silico modeled structure of the N-terminal ADRT catalytic domain interacted with the minor groove of B-DNA for ribosylation with the help of β-NAD+ which lead to a structural modification in DNA (DNA adduct). The possible interaction between calf thymus DNA (CT-DNA) and purified pierisin-5 protein was studied through spectral–spatial studies and the blue shift and hyperchromism in the UV–Visible spectra was observed. The DNA adduct property of pierisin-5 protein was validated by in vitro cytotoxic assay on human gastric (AGS) cancer cell lines. Our study is the first report of the mechanism of DNA binding property of pierisin-5 protein which leads to the induction of cytotoxicity and apoptotic cell death against cancer cell lines.

Communicated by Ramaswamy H. Sarma  相似文献   
13.
International Journal of Peptide Research and Therapeutics - The synthetic, linear peptide, D4E1, demonstrates antimicrobial activity against a broad spectrum of organisms including the toxigenic...  相似文献   
14.
15.
Increasing death rates due to antibiotic resistance deteriorate the existing treatment measures. Antimicrobial peptides have turned into the emerging cure for multidrug resistance. However, the stability and functionality determine an antimicrobial peptide as a drug. Analyses of the homodimeric β-helical peptide, gramicidin have suggested the significant role of gramicidin-A, gramicidin-B, and gramicidin-C as antimicrobial compounds, but the structural basis for understanding the stability and functionality is insufficient to resolve multidrug resistance. To identify the best template among gramicidin types as a therapeutic product, we combined a detailed comparative static analysis and dynamic analysis along with conformational free energy and secondary structure prediction. We observed that the high intramolecular interactions and the geometrical features favored gramicidin-A among other types of gramicidin. Our analyses further revealed that the secondary structure of gramicidin-A showed β sheets with coils along the conformations without any disruption, thereby enhanced its membrane interactions in terms of binding free energy. In conclusion, gramicidin-A has definitely showed enhanced structural stability and functionality; this could be considered the best template for a potential therapeutic product.  相似文献   
16.
Indian hedgehog (Ihh) is highly expressed in prehypertrophic chondrocytes in vivo and has been proposed to regulate the proliferation and maturation of chondrocytes and bone collar formation in the growth plate. In high-density cultures of rabbit growth-plate chondrocytes, Ihh mRNA was also expressed at the highest level in the prehypertrophic stage. To explore endogenous factors that regulate Ihh expression in chondrocytes, we examined the effects of various growth factors on Ihh mRNA expression in this system. Retinoic acid (RA) and bone morphogenetic protein-2 enhanced Ihh mRNA expression, whereas PTH/PTH-related peptide (PTHrP) markedly suppressed Ihh expression. RA at more than 10(-8) M induced the expression of Ihh and Patched 1 (Ptc1) within 3 h, before it increased the type X collagen mRNA level at 6-24 h. Cycloheximide blocked the up-regulation of Ihh by RA, indicating the requirement of de novo protein synthesis for this stimulation. These findings suggest that RA is involved in the up-regulation of Ihh during endochondral bone formation. In contrast to RA, PTH (1-84) at 10(-7) M abolished the mRNA expression of Ihh and Ptc1 within 2-4 h, before it suppressed the expression of type X collagen at 12-24 h. The inhibition of Ihh expression by PTH (1-84) did not require de novo protein synthesis. PTH (1-34), PTHrP (1-34), and (Bu)(2)cAMP also suppressed Ihh expression. On the other hand, Ihh has been reported to induce PTHrP synthesis in the perichondrium. Consequently, the direct inhibitory action of PTH/PTHrP on Ihh appears to be a negative feedback mechanism that prevents excess PTHrP accumulation in cartilage.  相似文献   
17.
18.
The development of chronic rejection is the major limitation to long-term allograft survival. HLA class I Ags have been implicated to play a role in this process because ligation of class I molecules by anti-HLA Abs stimulates smooth muscle cell and endothelial cell proliferation. In this study, we show that ligation of HLA class I molecules on the surface of human aortic endothelial cells stimulates phosphorylation of Src, focal adhesion kinase, and paxillin. Signaling through class I stimulated Src phosphorylation and mediated fibroblast growth factor receptor (FGFR) translocation to the nucleus. In contrast, Src kinase activity was not involved in class I-mediated transfer of FGFR from cytoplasmic stores to the cell surface. Inhibition of Src protein kinase activity blocked HLA class I-stimulated tyrosine phosphorylation of paxillin and focal adhesion kinase. Furthermore, HLA class I-mediated phosphorylation of the focal adhesion proteins and FGFR expression was inhibited by cytochalasin D and latrunculin A, suggesting a role for the actin cytoskeleton in the signaling process. These findings indicate that anti-HLA Abs have the capacity to transduce activation signals in endothelial cells that may promote the development of chronic rejection.  相似文献   
19.
Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed at high levels in prostate cancer and in tumor-associated neovasculature. In this study, we report that PSMA is internalized via a clathrin-dependent endocytic mechanism and that internalization of PSMA is mediated by the five N-terminal amino acids (MWNLL) present in its cytoplasmic tail. Deletion of the cytoplasmic tail abolished PSMA internalization. Mutagenesis of N-terminal amino acid residues at position 2, 3, or 4 to alanine did not affect internalization of PSMA, whereas mutation of amino acid residues 1 or 5 to alanine strongly inhibited internalization. Using a chimeric protein composed of Tac antigen, the alpha-chain of interleukin 2-receptor, fused to the first five amino acids of PSMA (Tac-MWNLL), we found that this sequence is sufficient for PSMA internalization. In addition, inclusion of additional alanines into the MWNLL sequence either in the Tac chimera or the full-length PSMA strongly inhibited internalization. From these results, we suggest that a novel MXXXL motif in the cytoplasmic tail mediates PSMA internalization. We also show that dominant negative micro2 of the adaptor protein (AP)-2 complex strongly inhibits the internalization of PSMA, indicating that AP-2 is involved in the internalization of PSMA mediated by the MXXXL motif.  相似文献   
20.
Remodeling rules with either a global or a local mathematical form have been proposed for load-bearing bones in the literature. In the local models, the bone architecture (shape, density) is related to the strains/energies sensed at any point in the bone, while in the global models, a criterion believed to be applicable to the whole bone is used. In the present paper, a local remodeling rule with a strain "error" form is derived as the necessary condition for the optimum of a global remodeling criterion, suggesting that many of the local error-driven remodeling rules may have corresponding global optimization-based criteria. The global criterion proposed in the present study is a trade-off between the cost of metabolic growth and use, mathematically represented by the mass, and the cost of failure, mathematically represented by the total strain energy. The proposed global criterion is shown to be related to the optimality criteria methods of structural optimization by the equivalence of the model solution and the fully stressed solution for statically determinate structures. In related work, the global criterion is applied to simulate the strength recovery in bones with screw holes left behind after removal of fracture fixation plates. The results predicted by the model are shown to be in good agreement with experimental results, leading to the conclusion that load-bearing bones are structures with optimal shape and property for their function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号