首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   51篇
  国内免费   1篇
  759篇
  2023年   6篇
  2022年   15篇
  2021年   16篇
  2020年   10篇
  2019年   16篇
  2018年   20篇
  2017年   24篇
  2016年   26篇
  2015年   27篇
  2014年   32篇
  2013年   51篇
  2012年   46篇
  2011年   44篇
  2010年   36篇
  2009年   23篇
  2008年   38篇
  2007年   27篇
  2006年   38篇
  2005年   38篇
  2004年   27篇
  2003年   21篇
  2002年   15篇
  2001年   8篇
  2000年   13篇
  1999年   16篇
  1998年   11篇
  1997年   11篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   4篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有759条查询结果,搜索用时 0 毫秒
81.
Role of serotonin in olfactory recognition was tested by depleting the olfactory bulb serotonin during postnatal day (PND) 1 - 4 following administration of 5,7-dihydroxytryptamine. Significant difference in the olfactory recognition test was observed during PND5-7; control pups successfully recognized and oriented towards their mother; whereas treated pups failed to recognize their mother odour. Later on, during PND12-14, both group of pups responded equally in the recognition test. Levels of olfactory bulb serotonin were depleted (53.3%) in the treated pups on PND-8, which was restored on PND-14 with only 15% variation. Further analysis demonstrated that depletion of serotonin in olfactory bulb did not affect the normal suckling and weight gain, it only modulates olfactory recognition.  相似文献   
82.
Plant-based expression systems are attractive for the large-scale production of pharmaceutical proteins. However, glycoproteins require particular attention as inherent differences in the N-glycosylation pathways of plants and mammals result in the production of glycoproteins bearing core-xylose and core-alpha(1,3)-fucose glyco-epitopes. For treatments requiring large quantities of repeatedly administered glycoproteins, the immunological properties of these non-mammalian glycans are a concern. Recombinant glycoproteins could be retained within the endoplasmic reticulum (ER) to prevent such glycan modifications occurring in the late Golgi compartment. Therefore, we analysed cPIPP, a mouse/human chimeric IgG1 antibody binding to the beta-subunit of human chorionic gonadotropin (hCG), fused to a C-terminal KDEL sequence, to investigate the efficiency of ER retrieval and the consequences in terms of N-glycosylation. The KDEL-tagged cPIPP antibody was expressed in transgenic tobacco plants or Agrobacterium-infiltrated tobacco and winter cherry leaves. N-Glycan analysis showed that the resulting plantibodies contained only high-mannose (Man)-type Man-6 to Man-9 oligosaccharides. In contrast, the cPIPP antibody lacking the KDEL sequence was found to carry complex N-glycans containing core-xylose and core-alpha(1,3)-fucose, thereby demonstrating the secretion competence of the antibody. Furthermore, fusion of KDEL to the diabody derivative of PIPP, which contains an N-glycosylation site within the heavy chain variable domain, also resulted in a molecule lacking complex glycans. The complete absence of xylose and fucose residues clearly shows that the KDEL-mediated ER retrieval of cPIPP or its diabody derivative is efficient in preventing the formation of non-mammalian complex oligosaccharides.  相似文献   
83.
The ability of stem cells to generate distinct fates is critical for the generation of cellular diversity during development. Central nervous system (CNS) stem cells respond to bone morphogenetic protein (BMP) 4 by differentiating into a wide variety of dorsal CNS and neural crest cell types. We show that distinct mechanisms are responsible for the generation of two of these cell types, smooth muscle and glia. Smooth muscle differentiation requires BMP-mediated Smad1/5/8 activation and predominates where local cell density is low. In contrast, glial differentiation predominates at high local densities in response to BMP4 and is specifically blocked by a dominant-negative mutant Stat3. Upon BMP4 treatment, the serine-threonine kinase FKBP12/rapamycin-associated protein (FRAP), mammalian target of rapamycin (mTOR), associates with Stat3 and facilitates STAT activation. Inhibition of FRAP prevents STAT activation and glial differentiation. Thus, glial differentiation by BMP4 occurs by a novel pathway mediated by FRAP and STAT proteins. These results suggest that a single ligand can regulate cell fate by activating distinct cytoplasmic signals.  相似文献   
84.
85.
Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2,*3A,*3B,*3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G>T/A & 3435C>T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 and MDR1 gene polymorphisms of the South Indian population was significantly different from other populations.  相似文献   
86.
Thiruchandurai Rajan, Julie Moore and Leonard Shultz here review the evolution of technology in murine xeno-lymphohemopoietic chimeras, produced by engraftment with xenogeneic (fetal or adult) progenitor cells or mature lymphohemopoietic tissues into immunodeficient mice, and their use as hosts for hemoprotozoan parasites. Particular attention is paid to the development of chimeras that house xenogeneic peripheral red blood cells (xeno-RBC). These chimeras are potentially invaluable models for hemoprotozoan parasites, such as Babesia and Plasmodium. There are, however, daunting limitations that have to be overcome before these models can become universally acceptable systems for the study of these parasitic agents.  相似文献   
87.
Garvey SM  Rajan C  Lerner AP  Frankel WN  Cox GA 《Genomics》2002,79(2):146-149
Muscular dystrophy with myositis (mdm) is a recessive mouse mutation that causes severe and progressive muscular degeneration. Here we report the identification of the mdm mutation as a complex rearrangement that includes a deletion and a LINE insertion in the titin (Ttn) gene. Mutant allele-specific splicing results in the deletion of 83 amino acids from the N2A region of TTN, a domain thought to bind calpain-3 (CAPN3) the product of the human limb-girdle muscular dystrophy type 2A (LGMD2A) gene. The Ttn(mdm) mutant mouse may serve as a model for human tibial muscular dystrophy, which maps to the TTN locus at 2q31 and shows a secondary reduction of CAPN3 similar to that observed in mdm skeletal muscle. This is the first demonstration that a mutation in Ttn is associated with muscular dystrophy and provides a novel animal model to test for functional interactions between TTN and CAPN3.  相似文献   
88.
In this research, we characterized the histopathological impact of dengue virus (serotype DENV-2) infection in livers of BALB/c mice. The mice were infected with different doses of DENV-2 via intraperitoneal injection and liver tissues were processed for histological analyses and variation was documented. In the BALB/c mouse model, typical liver tissues showed regular hepatocyte architecture, with normal endothelial cells surrounding sinusoid capillary. Based on histopathological observations, the liver sections of BALB/c mice infected by DENV-2 exhibited a loss of cell integrity, with a widening of the sinusoidal spaces. There were marked increases in the infiltration of mononuclear cells. The areas of hemorrhage and micro- and macrovesicular steatosis were noted. Necrosis and apoptosis were abundantly present. The hallmark of viral infection, i.e., cytopathic effects, included intracellular edema and vacuole formation, cumulatively led to sinusoidal and lobular collapse in the liver. The histopathological studies on autopsy specimens of fatal human DENV cases are important to shed light on tissue damage for preventive and treatment modalities, in order to manage future DENV infections. In this framework, the method present here on BALB/c mouse model may be used to study not only the effects of infections by other DENV serotypes, but also to investigate the effects of novel drugs, such as recently developed nano-formulations, and the relative recovery ability with intact immune functions of host.  相似文献   
89.
Summary Phosphorus adsor tion isotherms were constructed for six Latosols and one calcareous soil from Hawaii which differed greatly in their phosphorus adsorption capacities. Equilibration was in 0.01M CaCl2 at 25°C for 6 or 8 days. P adsorption properties of the soils were characterised employing the linear form of Langmuir's equation and also by calculating the amount of P adsorbed between equilibrium concentrations of 0.25 to 0.35 ppm (estimates of P buffering capacities), following the procedure of Oaanne and Shaw13. The isotherms of all the soils were found to fit the Langmuir equation at low equilibrium concentrations (< 5 ppm) and the P adsorption maxima ranged from 520 to 10 500 ppm. The buffering capacity estimates correlated closely (r = 0.950) with the adsorption maxima of soils. However, in two soils, the estimates were much lower than expected from their adsorption maxima.Millet (Pennisetum typhoides) was grown in these soils in pots, at 6 phosphorus levels corresponding to 6 equilibrium concentrations chosen from the phosphorus adsorption isotherms. Equilibrium concentrations at maximum growth of millet (Cmax) in Latosols varied inversely with the adsorption maxima of the soils. The relationship between these two parameters was expressed by the equation CmaX = a,b–k, where Cmax = equilibrium P concentration at maximum growth of millet, b = P adsorption maximum and a and k are constants. Quantitative expression of the constants are useful as they enable predictions of CmaX for a particular crop from the phosphorus adsorption maximum. This relation was found to hold also for the data on limed acid soils published by Woodruff and Kamprath20.A part of the Ph.D. Thesis approved by the University of Hawaii, Honolulu, Hawaii, U.S.A. (1971).  相似文献   
90.
Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号