首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   675篇
  免费   48篇
  723篇
  2023年   6篇
  2022年   15篇
  2021年   16篇
  2020年   10篇
  2019年   15篇
  2018年   20篇
  2017年   24篇
  2016年   25篇
  2015年   22篇
  2014年   32篇
  2013年   50篇
  2012年   44篇
  2011年   41篇
  2010年   35篇
  2009年   23篇
  2008年   38篇
  2007年   26篇
  2006年   36篇
  2005年   35篇
  2004年   26篇
  2003年   21篇
  2002年   15篇
  2001年   7篇
  2000年   13篇
  1999年   15篇
  1998年   9篇
  1997年   9篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有723条查询结果,搜索用时 0 毫秒
91.
TNF-α has a multifunctional role in autoimmune diseases as reflected in the variable responses of different human diseases to anti-TNF-α therapy. Recent studies have suggested that TNF-α modulates autoimmunity partially via effects on regulatory T cells (Tregs) and that these effects are mediated through the type II TNFR (TNFR2). We have investigated the requirement for TNFR2-expression on murine natural Tregs (nTregs) and induced Tregs (iTregs) in mediating suppression of colitis. Surprisingly, we find that TNFR2-expression is required for both spleen- and thymus-derived nTreg-mediated suppression, but is not required for iTreg-mediated suppression. Abnormal TNFR2(-/-) nTreg function was not associated with an in vivo decrease in accumulation, stability, or expression of markers known to be relevant in Treg function. Because iTregs are generated in the presence of TGF-β, we investigated whether activation in the presence of TGF-β could overcome the functional defect in TNFR2(-/-) nTregs. Although preactivation alone did not restore suppressive function of nTregs, preactivation in the presence of TGF-β did. These results identify potentially critical differences in activation requirements for nTregs versus iTregs. Furthermore, our findings are consistent with reports suggesting that nTregs are activated in sites of inflammation while iTregs are activated in lymph nodes. Finally, by demonstrating that nTregs require TNF-α for optimal function whereas iTregs do not, our results suggest that the enigma of variable responses of different human diseases to anti-TNF-α therapy may relate to whether nTregs or iTregs have the predominant regulatory role in a given disease.  相似文献   
92.
Familial hypertrophic cardiomyopathy (FHC) is a disease caused by mutations in contractile proteins of the sarcomere. Our laboratory developed a mouse model of FHC with a mutation in the thin filament protein alpha-tropomyosin (TM) at amino acid 180 (Glu180Gly). The hearts of these mice exhibit dramatic systolic and diastolic dysfunction, and their myofilaments demonstrate increased calcium sensitivity. The mice also develop severe cardiac hypertrophy, with death ensuing by 6 mo. In an attempt to normalize calcium sensitivity in the cardiomyofilaments of the hypertrophic mice, we generated a chimeric alpha-/beta-TM protein that decreases calcium sensitivity in transgenic mouse cardiac myofilaments. By mating mice from these two models together, we tested the hypothesis that an attenuation of myofilament calcium sensitivity would modulate the severe physiological and pathological consequences of the FHC mutation. These double-transgenic mice "rescue" the hypertrophic phenotype by exhibiting a normal morphology with no pathological abnormalities. Physiological analyses of these rescued mice show improved cardiac function and normal myofilament calcium sensitivity. These results demonstrate that alterations in calcium response by modification of contractile proteins can prevent the pathological and physiological effects of this disease.  相似文献   
93.
Lymphatic filariasis occurs in endemic pockets. Patent infections with long-term, high-grade microfilaremia do not develop in nonendemic individuals. It is tempting to speculate that individuals with intact immune responses to filarial antigens are capable of dealing with filarial exposure without developing persistent infection. There are published data that support the idea that only those individuals who are impaired in their immune defense against these parasites owing to neonatal tolerization become productively infected with the filarial parasites. If the model is correct, there are profound implications for global eradication.  相似文献   
94.
The blue-spotted maskray, previously N. kuhlii, consists of up to eleven lineages representing separate species. Nine of these species (N. australiae, N. bobwardi, N. caeruleopunctata, N. malaccensis, N. moluccensis, N. orientale, N. vali, N. varidens, N. westpapuensis) have already been formally described and two (Indian Ocean maskray and Ryukyu maskray) remain undescribed. Here, the Indian Ocean maskray is described as a new species, Neotrygon indica sp. nov. Specimens of the new species were generally characterized on their dorsal side by a moderately large number of small ocellated blue spots, a low number of medium-sized ocellated blue spots, the absence of large ocellated blue spots, a high number of dark speckles, a few dark spots, and a conspicuous occipital mark. The new species formed a distinct haplogroup in the tree built from concatenated nucleotide sequences at the CO1 and cytochrome b loci. A diagnosis based on colour patterns and nucleotide sequences at the CO1 and cytochrome b loci is proposed. The distribution of N. indica sp. nov. includes the Indian coast of the Bay of Bengal, the Indian coast of the Laccadives Sea, and Tanzania. Considerable sampling effort remains necessary for an in-depth investigation of the phylogeographic structure of the Indian Ocean maskray.  相似文献   
95.
The possible relationship between the water binding by bacterial endospores and their dormancy and heat resistances has been examined in terms of the coordination characteristics of the spore-bound calcium. Stabilities of the calcium complexes of typical cytoplasmic and structural spore components were determined by potentiometric equilibrium pH measurements in model systems consisting of DPA, glycine, alanine, glutamic acid, alanyl-glutamic acid, triglycine, and tetraglycine. The Ca++-form and H+-form spores of Clostridium botulinum 33A were investigated in vivo with respect to their water sorption and heat-resistance characteristics. The results suggest that the complexing of calcium and Ca(II)-DPA may be biologically significant for spore resistance and dormancy at the following three levels: (1) complexing with spore cytoplasmic pool constituents consistent with the idea of a metal-chelate cross-linked cytoplasm or spore cement stabilizing the essential biological macromolecules, (2) complexing with structural components of the spore as indicated by the interaction with model peptides, and (3) coordination with water to produce an apparently dehydrated environment in the spore as evident from the much greater water-sorption capacity of the Ca++-form spores vs the much smaller water sorption of the H+-form spores. Interestingly enough, DPA itself, in the absence of metal ion, showed some interaction with di-, tri-, and tetrapeptides and a weak but detectable interaction with amino acids. Although the exact mode of the DPA-peptide interaction is not clear, it is attractive to speculate about its possible involvement in the control of spore dormancy and resistance.  相似文献   
96.
97.
Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is ubiquitous biological tripeptide with multiple functions and possible therapeutic uses. The oxidized disulfide form (GSSG) self-assembles into fibrillar aggregates and gels in organic solvents, but not in solvent mixtures with high water content. Here, the disulfide bond has been replaced with a pyrenyl moiety in order to test the ability of GSH to direct noncovalent self-assembly in H2O, when combined with a hydrophobic driving force for aggregation. The resulting GSH-pyrene forms gels in 95% H2O:5% DMSO. The gamma-glutamyl group is critical for gelation, as it is with GSSG organo-gels, inasmuch as neither S-(pyrenyl)-cysteinyl-glycine nor the iodo-acetamido-pyrene precursor gels under any conditions studied. Circular dichroism and fluorescence spectroscopy indicate that the pyrene moieties cluster within the gels. Scanning and transmission electron microscopy reveal fibrous networks with individual strands of approximately 50-100 nm diameter. Saturation transfer difference (STD) NMR studies demonstrate that water interacts strongly with GSH-borne protons in both solution and gel states, but only the gels include water-pyrenyl interactions with significant residence times.  相似文献   
98.
Mechanistic understanding of the intracellular trafficking of nonviral nucleic acid delivery vehicles remains elusive. A live, single cell-based assay is described here that is used to investigate and quantitate the spatiotemporal, intracellular pH microenvironment of polymeric-based nucleic acid delivery vehicles. Polycations such as polyethylenimine (PEI), poly-l-lysine (PLL), beta-cyclodextrin-containing polymers lacking or possessing imidazole termini (CDP or CDP-imid), and cyclodextrin-grafted PEI (CD-PEI) are used to deliver an oligonucleotide containing a single fluorophore with two emission lines that can be employed to measure the pH. Delivery vehicles were also sterically stabilized by addition of poly(ethylene glycol) (PEG) and investigated. The intracellular trafficking data obtained via this new methodology show that vectors such as PEI and CDP-imid can buffer the endocytic vesicles while PLL and CDP do not. Additionally, the PEGylated vectors reveal the same buffering capacity as their unstabilized variants. Here, the live cell, spatiotemporal mapping of these behaviors is demonstrated and, when combined with cell uptake and luciferase expression data, shows that there is not a correlation between buffering capacity and gene expression.  相似文献   
99.
Autosomal dominant retinitis pigmentosa (ADRP) has been linked to mutations in the gene encoding rhodopsin. Most RP-linked rhodopsin mutants are unable to fold correctly in the endoplasmic reticulum, are degraded by the ubiquitin proteasome system, and are highly prone to forming detergent-insoluble high molecular weight aggregates. Here we have reported that coexpression of folding-deficient, but not folding-proficient, ADRP-linked rhodopsin mutants impairs delivery of the wild-type protein to the plasma membrane. Fluorescence resonance energy transfer and co-precipitation studies revealed that mutant and wild-type rhodopsins form a high molecular weight, detergent-insoluble complex in which the two proteins are in close (<70 A) proximity. Co-expression of ARDP-linked rhodopsin folding-deficient mutants resulted in enhanced proteasome-mediated degradation and steady-state ubiquitination of the wild-type protein. These data suggested a dominant negative effect on conformational maturation that may underlie the dominant inheritance of ARDP.  相似文献   
100.
Rajan R  Zhu J  Hu X  Pei D  Bell CE 《Biochemistry》2005,44(10):3745-3753
S-Ribosylhomocysteinase (LuxS) is an Fe(2+)-dependent metalloenzyme that catalyzes the cleavage of the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of type II bacterial quorum-sensing molecule. The proposed mechanism involves an initial metal-catalyzed aldose-ketose isomerization reaction, which results in the migration of the ribose carbonyl group from its C1 to C2 position and the formation of a 2-ketone intermediate. A repetition of the isomerization reaction shifts the carbonyl group to the C3 position. Subsequent beta-elimination reaction at the C4 and C5 positions completes the catalytic cycle. In this work, a catalytically inactive mutant (C84A) of Co(2+)-substituted Bacillus subtilis LuxS was cocrystallized with the 2-ketone intermediate and the structure was determined to 1.8 A resolution. The structure reveals that the C2 carbonyl oxygen is directly coordinated with the metal ion, providing strong support for the proposed Lewis acid function of the metal ion during catalysis. Cys-84 and Glu-57 are optimally positioned to act as general acids/bases during the isomerization and elimination reactions. In addition, Ser-6, His-11, and Arg-39 are involved in substrate/ intermediate binding through hydrogen bonding interactions. The above conclusions are further confirmed by site-directed mutagenesis and visible absorption spectroscopic studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号