首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   4篇
  97篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1958年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
31.

Background

Gene silencing triggered by chemically synthesized small interfering RNAs (siRNAs) has become a powerful tool for deciphering gene function in many eukaryotes. However, prediction and validation of a single siRNA duplex specific to a target gene is often ineffective. RNA interference (RNAi) with synthetic siRNA suffers from lower silencing efficacy, off-target effects and is cost-intensive, especially for functional genomic studies. With the explosion of fungal genomic information, there is an increasing need to analyze gene function in a rapid manner. Therefore, studies were performed in order to investigate the efficacy of gene silencing induced by RNase III-diced-siRNAs (d-siRNA) in model filamentous fungus, Aspergillus nidulans.

Methodology/Principal Findings

Stable expression of heterologous reporter gene in A. nidulans eases the examination of a new RNAi-induction route. Hence, we have optimized Agrobacterium tumefaciens-mediated transformation (AMT) of A. nidulans for stable expression of sGFP gene. This study demonstrates that the reporter GFP gene stably introduced into A. nidulans can be effectively silenced by treatment of GFP-d-siRNAs. We have shown the down-regulation of two endogenous genes, AnrasA and AnrasB of A. nidulans by d-siRNAs. We have also elucidated the function of an uncharacterized Ras homolog, rasB gene, which was found to be involved in hyphal growth and development. Further, silencing potency of d-siRNA was higher as compared to synthetic siRNA duplex, targeting AnrasA. Silencing was shown to be sequence-specific, since expression profiles of other closely related Ras family genes in d-siRNA treated AnrasA and AnrasB silenced lines exhibited no change in gene expression.

Conclusions/Significance

We have developed and applied a fast, specific and efficient gene silencing approach for elucidating gene function in A. nidulans using d-siRNAs. We have also optimized an efficient AMT in A. nidulans, which is useful for stable integration of transgenes.  相似文献   
32.
Atherosclerotic lesions are often hypoxic and exhibit elevated lactate concentrations and local acidification of the extracellular fluids. The acidification may be a consequence of the abundant accumulation of lipid-scavenging macrophages in the lesions. Activated macrophages have a very high energy demand and they preferentially use glycolysis for ATP synthesis even under normoxic conditions, resulting in enhanced local generation and secretion of lactate and protons. In this review, we summarize our current understanding of the effects of acidic extracellular pH on three key players in atherogenesis: macrophages, apoB-containing lipoproteins, and HDL particles. Acidic extracellular pH enhances receptor-mediated phagocytosis and antigen presentation by macrophages and, importantly, triggers the secretion of proinflammatory cytokines from macrophages through activation of the inflammasome pathway. Acidity enhances the proteolytic, lipolytic, and oxidative modifications of LDL and other apoB-containing lipoproteins, and strongly increases their affinity for proteoglycans, and may thus have major effects on their retention and the ensuing cellular responses in the arterial intima. Finally, the decrease in the expression of ABCA1 at acidic pH may compromise cholesterol clearance from atherosclerotic lesions. Taken together, acidic extracellular pH amplifies the proatherogenic and proinflammatory processes involved in atherogenesis.  相似文献   
33.
34.

Background

Tracheoesophageal fistula (TEF) in dogs is a rare disease with only few reports in the literature. This report aims to contribute to the current literature on suitable diagnostic methods for TEF and to provide follow-up information after successful surgical treatment.

Case presentation

A seven-month-old intact female Spanish Water Dog was presented for further investigation of recurrent respiratory symptom. Bronchoscopy revealed a small hole-like defect in the tracheal wall at the bifurcation. The finding of the contrast material swallow study under fluoroscopy was indicative of a TEF. To further evaluate the connection between the trachea and esophagus, a computed tomography scan was performed. The TEF was surgically approached by thoracotomy through the right lateral sixth intercostal space. The fistula was identified, double ligated and divided. Histopathology confirmed the process to originate from the esophagus and to be patent. The dog was re-examined two weeks and ten months after surgery, with no evidence of recurring clinical signs.

Conclusions

Contrast material swallow study using fluoroscopy was the most reliable diagnostic method. Bronchoscopy may allow the fistula to be visualized, but due to a small fistular opening it can lead to a false negative result. Surgical correction by ligation and dividing of the fistula suggests a good prognosis for early diagnosed and operated TEF.  相似文献   
35.
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) in vitro. The major phosphorylation site for both kinases was serine 114, with serine 126 being a minor site. Ionizing radiation (IR)-induced phosphorylation of cellular PNKP on S114 was ATM dependent, whereas phosphorylation of PNKP on S126 required both ATM and DNA-PK. Inactivation of DNA-PK and/or ATM led to reduced PNKP at DNA damage sites in vivo. Cells expressing PNKP with alanine or aspartic acid at serines 114 and 126 were modestly radiosensitive and IR enhanced the association of PNKP with XRCC4 and DNA ligase IV; however, this interaction was not affected by mutation of PNKP phosphorylation sites. Purified PNKP protein with mutation of serines 114 and 126 had decreased DNA kinase and DNA phosphatase activities and reduced affinity for DNA in vitro. Together, our results reveal that IR-induced phosphorylation of PNKP by ATM and DNA-PK regulates PNKP function at DSBs.  相似文献   
36.
We have studied the effects of two polyamine biosynthetic inhibitors,-difluoromethylor-nithine (DFMO) and -difluoromethylarginine(DFMA), and of polyamines (PAs), alone and in combination onuredospore germination and germ tube growth in Uromyces phaseoliL, race O. Both the inhibitors at concentrations 0.01, 0.1 and1.0 mM produce successively inhibition of uredospore germinationin vitro. The inhibitors also delay the timing of spore germinationfor 15–30 min and restrict germ tube elongation. Stimulationof spore germination and germ tube growth was noticed in culturescontaining PAs (putrescine or spermidine) alone, while culturesfortified with inhibitor plus PA resulted in a partial reversionof the inhibitory effect, suggesting that PAs may be requiredfor normal germination and outgrowth of fungal spores. Sporegermination was completely inhibited on the surface of unifoliolatebean leaves treated with 0.5 mM or higher DFMO 1 d before inoculationwith pathogen, while DFMO treated 1 d after inoculation showedgreater damage of uredosporelings. In contrast, DFMA confersno effect even at 5 mM. Spores collected from bean plants givena pre- and post-inoculatory treatments with DFMO and DFMA showno significant differences in germination and pathogenicity,however, the higher doses caused significant decrease. (Received April 25, 1988; Accepted October 20, 1988)  相似文献   
37.
The wilt diseases caused by Verticillium dahliae and Fusarium oxysporum are the major diseases of eggplant (Solanum melongena L.). In order to generate transgenic resistance against the wilt diseases, Agrobacterium-mediated gene transfer was performed to introduce alfalfa glucanase gene encoding an acidic glucanase into eggplant using neomycin phosphotransferase (npt-II) gene as a plant selection marker. The transgene integration into eggplant genome was confirmed by Polymerase chain reaction (PCR) and Southern blot analysis and transgene expression by the glucanase activity and western blot analysis. The selected transgenic lines were challenged with V. dahliae and F. oxysporum under in vitro and in vivo growth conditions, and transgenic lines showed enhanced resistance against the wilt-causing fungi with a delay of 5–7 days in the disease development as compared to wild-type plants.  相似文献   
38.
39.
Bharti  ; Rajam  M. V. 《Annals of botany》1995,76(3):297-301
Specific inhibition of fungal polyamine (PA) biosynthesis byDL--difluoromethylornithine (DFMO, an inhibitor of ornithinedecarboxylase) has proved to be a novel and promising approachfor the control of several fungal plant infections. However,the effects of application of DFMO on the physiology and cytogeneticsof the host plant has not been studied in depth. We accordinglyundertook these experiments on wheat (Triticum aestivum L. cv.Agra local) which show that up to 5 mM DFMO had no significanteffect on growth, chlorophyll content, cellular PA levels, chromosomebehaviour, pollen fertility and polygenic traits of wheat plants;in fact, it caused a significant increase in growth, chlorophyllcontent, PA levels and yield in some of the treatments. However,the highest concentration of DFMO (10 mM) reduced seedling growthand PA levels, and occasionally induced some chromosomal alterationssuch as unoriented chromosomes at metaphase and anaphase inroot cells. Further, other PA inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG) and cyclohexylamine (CHA) even at 10mM did not affect the seedling growth, except DL--difluoromethylarginine(DFMA—5 and 10 mM) which induced significant reductionin growth of the seedlings. These observations suggest thatDFMO could be safely used as a protectant against fungal plantdiseases without affecting the host plant, since many fungalinfections reported so far are controllable by 1 mM DFMO orlower concentrations.Copyright 1995, 1999 Academic Press Triticum aestivum, polyamines, inhibitors, difluoromethylornithine, growth, polygenic traits, disease control  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号