首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4539篇
  免费   288篇
  国内免费   13篇
  2023年   36篇
  2022年   106篇
  2021年   238篇
  2020年   123篇
  2019年   133篇
  2018年   151篇
  2017年   145篇
  2016年   184篇
  2015年   245篇
  2014年   287篇
  2013年   381篇
  2012年   348篇
  2011年   321篇
  2010年   232篇
  2009年   201篇
  2008年   204篇
  2007年   199篇
  2006年   158篇
  2005年   128篇
  2004年   122篇
  2003年   112篇
  2002年   110篇
  2001年   66篇
  2000年   67篇
  1999年   52篇
  1998年   16篇
  1997年   28篇
  1996年   21篇
  1995年   22篇
  1994年   14篇
  1993年   22篇
  1992年   36篇
  1991年   23篇
  1990年   21篇
  1989年   17篇
  1988年   27篇
  1987年   12篇
  1986年   12篇
  1985年   17篇
  1984年   27篇
  1983年   15篇
  1982年   20篇
  1980年   11篇
  1978年   12篇
  1976年   8篇
  1974年   10篇
  1973年   10篇
  1971年   9篇
  1969年   7篇
  1967年   9篇
排序方式: 共有4840条查询结果,搜索用时 15 毫秒
91.
92.
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.  相似文献   
93.
Probiotics and Antimicrobial Proteins - In this study, a bacterial strain COFCAU_P1, isolated from the digestive tract of a freshwater teleost rohu (Labeo rohita), was identified as Bacillus...  相似文献   
94.
Probiotics and Antimicrobial Proteins - Gamma-aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in the central nervous system and is produced by irreversible decarboxylation of...  相似文献   
95.
The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined.  相似文献   
96.
Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.  相似文献   
97.
EcoHealth - Global amphibian populations are facing a novel threat, chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), which is responsible for the severe decline of a...  相似文献   
98.
99.
BackgroundThe purpose of this study was to investigate the feasibility of MOSFET dosimeter in measuring eye dose during 2D MV portal imaging for setup verification in radiotherapy.Materials and methodsThe in-vivo dose measurements were performed by placing the dosimeters over the eyes of 30 brain patients during the acquisition of portal images in linear accelerator by delivering 1 MU with the field sizes of 10 × 10 cm2 and 15 × 15 cm2.ResultsThe mean doses received by the left and right eyes of 10 out of 30 patients when both eyes were completely inside the anterior portal field were found to be 2.56 ± 0.2 cGy and 2.75 ± 0.2, respectively. Similarly, for next 10 patients out of the same 30 patients the mean doses to left and right eyes when both eyes were completely out of the anterior portal fields were found to be 0.13 ± 0.02 cGy and 0.17 ± 0.02 cGy, respectively. The mean doses to ipsilateral and contralateral eye for the last 10 patients when one eye was inside the anterior portal field were found to be 3.28 ± 0.2 cGy and 0.36 ± 0.1 cGy, respectively.ConclusionThe promising results obtained during 2D MV portal imaging using MOSFET have shown that this dosimeter is well suitable for assessing low doses during imaging thereby enabling to optimize the imaging procedure using the dosimetric data obtained. In addition, the documentation of the dose received by the patient during imaging procedure is possible with the help of an in-built software in conjunction with the MOSFET reader module.  相似文献   
100.
Plant secondary metabolites have been recently used for the synthesis of different nanoparticles. The present investigation aimed at evaluating the effect of gold (AuNPs) and silver (AgNPs) nanoparticles synthesized using Acalypha fruticosa leaf extracts to control the mosquito Culex pipiens. The A. fruticosa AuNPs and AgNPs spectra displayed their maximum absorption at 550 nm and 440 nm, respectively. The infrared spectra revealed different functional groups related to different chemical compounds. The larval mortality of aqueous leaf extract of A. fruticosa was 499.54 ppm (LC50) and 1734.06 ppm (LC90) after 24 h of treatment. This study revealed that AuNP (LC50, 30.2 and LC90, 104.83 ppm) and AgNP (LC50, 52.86 and LC90, 157.227 ppm) preparations were highly effective compared to the A. fruticosa extract alone and also more affordable, as a smaller amount was required. The present findings show the potential larvicidal effect of the synthesized AuNPs and AgNPs for the control of mosquito-mediated disease transmission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号