首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1789篇
  免费   103篇
  国内免费   10篇
  1902篇
  2023年   12篇
  2022年   39篇
  2021年   63篇
  2020年   27篇
  2019年   33篇
  2018年   43篇
  2017年   50篇
  2016年   51篇
  2015年   91篇
  2014年   121篇
  2013年   127篇
  2012年   113篇
  2011年   127篇
  2010年   95篇
  2009年   62篇
  2008年   103篇
  2007年   86篇
  2006年   72篇
  2005年   87篇
  2004年   63篇
  2003年   64篇
  2002年   51篇
  2001年   23篇
  2000年   17篇
  1999年   21篇
  1998年   13篇
  1997年   5篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   10篇
  1992年   19篇
  1991年   18篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1983年   6篇
  1982年   9篇
  1980年   9篇
  1976年   6篇
  1974年   11篇
  1973年   11篇
  1972年   5篇
  1971年   5篇
  1970年   10篇
  1969年   5篇
  1965年   4篇
排序方式: 共有1902条查询结果,搜索用时 7 毫秒
101.
The metabolic conversion of furfural by a methanogenic Archaea, Methanococcus sp., strain B was studied. The organism was grown on H2–CO2 in the presence of various concentrations of furfural. Furfural at higher concentrations, namely, 25 and 30 mM inhibited growth of this organism. At concentrations 5, 10, and 15 mM, no inhibition was observed. Furfural was completely (100%) metabolized at the concentration of 15 or <15 mM in the cultures within five days of incubation. The end product observed during furfural metabolism was furfuryl alcohol. An almost stoichiometric quantity of furfuryl alcohol was produced. This biotransformation is likely to be of value in the detoxification of furfural and its ultimate conversion to methane and CO2 by the anaerobic process.  相似文献   
102.
CD146, also known as melanoma cell adhesion molecule or MCAM, is a key cell adhesion protein in vascular endothelial cell activity and angiogenesis. CD146 promotes tumor progression of many cancers including melanoma and prostate. Strikingly, its expression is frequently lost in breast carcinoma cells, and it may act as a suppressor of breast cancer progression. While upstream mechanisms regulating CD146 are well documented, our understanding of the downstream molecular events underlying its mode of action remains to be elucidated. This review aims to focus on the progress in understanding the signaling mechanisms and the functional relevance of CD146, a multifaceted molecule, in cancer with particular emphasis on its role in inhibiting breast cancer progression.  相似文献   
103.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   
104.
Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO(2) by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon ( aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from alpha-Proteobacteria and Anabeana azollae.  相似文献   
105.
The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3+, rad9+, rad17+, rad26+, and hus1+) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of gamma-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.  相似文献   
106.
Raj A  Kuceyeski A  Weiner M 《Neuron》2012,73(6):1204-1215
Patterns of dementia are known to fall into dissociated but dispersed brain networks, suggesting that the disease is transmitted along neuronal pathways rather than by proximity. This view is supported by neuropathological evidence for "prion-like" transsynaptic transmission of disease agents like misfolded tau and beta amyloid. We mathematically model this transmission by a diffusive mechanism mediated by?the brain's connectivity network obtained from tractography of 14 healthy-brain MRIs. Subsequent graph theoretic analysis provides a fully quantitative, testable, predictive model of dementia. Specifically, we predict spatially distinct "persistent modes," which, we found, recapitulate known patterns of dementia and match recent reports of selectively vulnerable dissociated brain networks. Model predictions also closely match T1-weighted MRI volumetrics of 18 Alzheimer's and 18 frontotemporal dementia subjects. Prevalence rates predicted by the model strongly agree with published data. This work has many important implications, including dimensionality reduction, differential diagnosis, and especially prediction of future atrophy using baseline MRI morphometrics.  相似文献   
107.
The murid herpesvirus 4 (MuHV 4) species encompasses 7 isolates, out of which at least two (MHV-68, MHV-72) became in vitro propagated laboratory strains. Following intranasal inoculation, MuHV 4 induces an acute infectious mononucleosis-like syndrome with elevated levels of peripheral blood leukocytes, shifts in the relative proportion of lymphocytes along with the appearance of atypical mononuclear cells. At least two isolates exhibited spontaneous deletions at the left hand (5′-end) of their genome, resulting in the absence of M1, M2, M3 genes (strain MHV-72) and also of the M4 gene (strain MHV-76). Based on DNA sequence amplifications only, another two isolates (MHV-Šum and MHV-60) were shown to possess similar deletions of varying length. During latency (until 24 months post-infection), the mice infected with any MuHV 4 isolate (except MHV-76) developed lymphoproliferative disorders. The lack of tumor formation in MHV-76 infected mice was associated with persistent virus production at late post-infection intervals. In addition to careful analysis of spontaneously occurring 5′-end genome defects, our knowledge of the function of 5′-end genes relies on the behaviour of mutants with corresponding deletions and/or insertions. While M2 and M3 genes encode immune evasion proteins, M4 codes for a soluble glycopeptide acting as immunomodulator and/or immunostimulator.  相似文献   
108.
109.
Summary A synthetic lactose-inducible promoter was chosen to study host cell responses to the over-expression of heterologous genes. Fermentations were conducted to compare the effect of induction strategies on the synthesis of -galactosidase versus the production of recombinant protein. The levels of lactose, IPTG and glucose during induction were manipulated to adjust the utilization of lactose as the inducer and/or the carbon source. In addition, the involvement of the gal operon in lactose metabolism was also explored in order to optimize lactose transport and utilization during induction.  相似文献   
110.
Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow-derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号