首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1831篇
  免费   107篇
  国内免费   10篇
  1948篇
  2023年   12篇
  2022年   39篇
  2021年   64篇
  2020年   27篇
  2019年   33篇
  2018年   44篇
  2017年   50篇
  2016年   53篇
  2015年   96篇
  2014年   122篇
  2013年   129篇
  2012年   116篇
  2011年   128篇
  2010年   100篇
  2009年   63篇
  2008年   105篇
  2007年   87篇
  2006年   72篇
  2005年   90篇
  2004年   67篇
  2003年   65篇
  2002年   52篇
  2001年   23篇
  2000年   19篇
  1999年   20篇
  1998年   15篇
  1997年   5篇
  1996年   8篇
  1995年   12篇
  1994年   9篇
  1993年   10篇
  1992年   20篇
  1991年   18篇
  1990年   13篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   10篇
  1983年   7篇
  1982年   9篇
  1980年   9篇
  1976年   6篇
  1974年   11篇
  1973年   11篇
  1972年   5篇
  1971年   5篇
  1970年   10篇
  1969年   5篇
  1965年   4篇
排序方式: 共有1948条查询结果,搜索用时 15 毫秒
41.

Background

We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13 during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of Pseudomonas aeruginosa exotoxin A (IL13-PE) and observed that the intranasal delivery of IL13-PE reduced bleomycin-induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE) would diminish the anti-fibrotic properties of IL13-PE.

Methodology/Principal Findings

Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28 after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE. Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice.

Conclusions

Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic response suggesting that the immune elicitation by this pathogen exerts anti-fibrotic effects.  相似文献   
42.
Summary We have recently reported that autologous tumor-specific cytotoxic T lymphocyte (CTL) lines and clones can be developed from lymphocytes infiltrating ovarian malignant ascites (TAL). In this study, we investigated the biological effects of tumor necrosis factor (TNF) in the induction, expansion, long-term proliferation and lytic function of CD8+ TAL. TNF up-regulated the IL-2 receptor (IL-2R) chain (Tac antigen) on the surface of CD3+ CD8+ CD4 TAL, enhanced the proliferation of autologous tumor-specific CTL, and potentiated their lytic function in long-term cultures. Furthermore, in the induction and expansion phase of CD8+ TAL, the presence of TNF was associated with a selective increase in CD8+ IL-2R+ (Tac+) cells, and subsequent decrease in CD4+ IL-2R+ (Tac+) cells. These results suggest that the observed facilitation of the outgrowth of CD8+ cells in TAL cultures may be due, at least in part, to the up-regulation of IL-2R, and indicate the usefulness of TNF in the analysis of signalling in autologous tumor-reactive CTL.  相似文献   
43.
This study examined the role and physiological relevance of 3-hydroxyisobutyrate dehydrogenase-I (3HIBDHI) of Pseudomonas denitrificans ATCC 13867 in the degradation of 3-hydroxypropionic acid (3-HP) during 3-HP production. The gene encoding 3HIBDH-I of P. denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL21 (DE3). The recombinant 3HIBDH-I was then purified on a Ni-NTA-HP column and characterized for its choice of substrates, cofactors, metals, reductants, and the optimal temperature and pH. The recombinant 3HIBDH-I showed a high catalytic constant (k cat/K m) of 604.1 ± 71.1 mM/S on (S)-3-hydroxyisobutyrate, but no detectable activity on (R)-3-hydroxyisobutyrate. 3HIBDH-I preferred NAD+ over NADP+ as a cofactor for its catalytic activity. The k cat/K m determined for 3-HP was 15.40 ± 1.43 mM/S in the presence of NAD+ at 37°C and pH 9.0. In addition to (S)-3-hydroxyisobutyrate and 3-HP, 3HIBDH-I utilized l-serine, methyl-d,l-serine, and methyl-(S)-(+)-3-hydroxy-2-methylpropionate; on the other hand, the k cat/K m values determined for these substrates were less than 5.0mM/S. Ethylenediaminetetraacetic acid, 2-mercaptoethanol, dithiothreitol and Mn2+ increased the activity of 3HIBDHI significantly, whereas the presence of Fe2+, Hg2+ and Ag+ in the reaction mixture at 1.0 mM completely inhibited its activity. This study revealed the characteristics of 3HIBDH-I and its significance in 3-HP degradation.  相似文献   
44.
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of “active” chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.  相似文献   
45.
46.
The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.  相似文献   
47.
Bacillus sp. DT7 produced very high levels of alkaline and thermotolerant pectinase by solid state fermentation. Production of this enzyme was affected by nature of solid substrate, level of moisture content, presence or absence of carbon, nitrogen, mineral and vitamin supplements. Maximum enzyme production of 8050 U/g dry substrate was obtained in wheat bran supplemented with polygalacturonic acid (PGA; 1%, w/v) and neurobion (a multivitamin additive; 27 micro l/g dry substrate) with distilled water at 75% moisture level, after 36 h of incubation at 37 degrees C.  相似文献   
48.
Upreti RK  Kumar M  Shankar V 《Proteomics》2003,3(4):363-379
Although widely distributed in eukaryotic cells glycoproteins appear to be rare in prokaryotic organisms. The prevalence of the misconception that bacteria do not glycosylate their proteins has been a subject matter of discussion for a long time. Glycoconjugates that are linked to proteins or peptides, generated by the ribosomal translational mechanism have been reported only in the last two to three decades in a few prokaryotic organisms. Most studied prokaryotic glycoproteins are the S-layer glycoproteins of Archeabacteria. Apart from these, membrane-associated, surface-associated, secreted glycoproteins and exoenzymes glycoproteins are also well documented in both, Archea and Eubacteria. From the recent literature, it is now clear that prokaryotes are capable of glycosylating proteins. In general, prokaryotes are deprived of the cellular organelles required for glycosylation. In prokaryotes many different glycoprotein structures have been observed that display much more variation than that observed in eukaryotes. Besides following similar mechanisms in the process of glycosylation, prokaryotes have also been shown to use mechanisms that are different from those found in eukaryotes. The knowledge pertaining to the functional aspects of prokaryotic glycoproteins is rather scarce. This review summarizes developments and understanding relating to characteristics, synthesis, and functions of prokaryotic glycoproteins. An extensive summary of glycosylation that has been reported to occur in bacteria has also been tabulated. Various possible applications of these diverse biomolecules in biotechnology, vaccine development, pharmaceutics and diagnostics are also touched upon.  相似文献   
49.
50.
The aim of this study was to image tibio-femoral movement during flexion in the living knee. Ten loaded male Caucasian knees were initially studied using MRI, and the relative tibio-femoral motions, through the full flexion arc in neutral tibial rotation, were measured. On knee flexion from hyperextension to 120 degrees , the lateral femoral condyle moved posteriorly 22 mm. From 120 degrees to full squatting there was another 10 mm of posterior translation, with the lateral femoral condyle appearing almost to sublux posteriorly. The medial femoral condyle demonstrated minimal posterior translation until 120 degrees . Thereafter, it moved 9 mm posteriorly to lie on the superior surface of the medial meniscal posterior horn. Thus, during flexion of the knee to 120 degrees , the femur rotated externally through an angle of 20 degrees . However, on flexion beyond 120 degrees , both femoral condyles moved posteriorly to a similar degree. The second part of this study investigated the effect of gender, side, load and longitudinal rotation. The pattern of relative tibio-femoral movement during knee flexion appears to be independent of gender and side. Femoral external rotation (or tibial internal rotation) occurs with knee flexion under loaded and unloaded conditions, but the magnitude of rotation is greater and occurs earlier on weight bearing. With flexion plus tibial internal rotation, the pattern of movement follows that in neutral. With flexion in tibial external rotation, the lateral femoral condyle adopts a more anterior position relative to the tibia and, particularly in the non-weight bearing knee, much of the femoral external rotation that occurs with flexion is reversed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号