首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3663篇
  免费   300篇
  国内免费   3篇
  2023年   14篇
  2022年   22篇
  2021年   39篇
  2020年   34篇
  2019年   54篇
  2018年   56篇
  2017年   43篇
  2016年   74篇
  2015年   114篇
  2014年   171篇
  2013年   174篇
  2012年   229篇
  2011年   221篇
  2010年   170篇
  2009年   154篇
  2008年   222篇
  2007年   233篇
  2006年   225篇
  2005年   223篇
  2004年   205篇
  2003年   179篇
  2002年   198篇
  2001年   64篇
  2000年   44篇
  1999年   47篇
  1998年   50篇
  1997年   34篇
  1996年   36篇
  1995年   42篇
  1994年   32篇
  1993年   37篇
  1992年   29篇
  1991年   30篇
  1990年   31篇
  1989年   29篇
  1988年   24篇
  1987年   20篇
  1986年   15篇
  1985年   33篇
  1984年   26篇
  1983年   20篇
  1982年   24篇
  1981年   16篇
  1980年   26篇
  1978年   17篇
  1977年   14篇
  1976年   14篇
  1974年   15篇
  1972年   14篇
  1969年   13篇
排序方式: 共有3966条查询结果,搜索用时 31 毫秒
941.
Long QT syndrome (LQTS) is an inherited disorder characterized by prolonged QT intervals and potentially life-threatening arrhythmias. Mutations in 12 different genes have been associated with LQTS. Here we describe a patient with LQTS who has a mutation in KCNQ1 as well as a polymorphism in KCNH2. The proband (MMRL0362), a 32-year-old female, exhibited multiple ventricular extrasystoles and one syncope. Her ECG (QT interval corrected for heart rate (QTc) = 518ms) showed an LQT2 morphology in leads V4-V6 and LQT1 morphology in leads V1-V2. Genomic DNA was isolated from lymphocytes. All exons and intron borders of 7 LQTS susceptibility genes were amplified and sequenced. Variations were detected predicting a novel missense mutation (V110I) in KCNQ1, as well as a common polymorphism in KCNH2 (K897T). We expressed wild-type (WT) or V110I Kv7.1 channels in CHO-K1 cells cotransfected with KCNE1 and performed patch-clamp analysis. In addition, WT or K897T Kv11.1 were also studied by patch clamp. Current-voltage (I-V) relations for V110I showed a significant reduction in both developing and tail current densities compared with WT at potentials >+20 mV (p < 0.05; n = 8 cells, each group), suggesting a reduction in IKs currents. K897T- Kv11.1 channels displayed a significantly reduced tail current density compared with WT-Kv11.1 at potentials >+10 mV. Interestingly, channel availability assessed using a triple-pulse protocol was slightly greater for K897T compared with WT (V0.5 = -53.1 ± 1.13 mV and -60.7 ± 1.15 mV for K897T and WT, respectively; p < 0.05). Comparison of the fully activated I-V revealed no difference in the rectification properties between WT and K897T channels. We report a patient with a loss-of-function mutation in KCNQ1 and a loss-of-function polymorphism in KCNH2. Our results suggest that a reduction of both IKr and IKs underlies the combined LQT1 and LQT2 phenotype observed in this patient.  相似文献   
942.
Biofilms are known to be robust biocatalysts. Conventionally, they have been mainly applied for wastewater treatment, however recent reports about their employment for chemical synthesis are increasingly attracting attention. Engineered Pseudomonas sp. strain VLB120ΔC biofilm growing in a tubular membrane reactor was utilized for the continuous production of (S)‐styrene oxide. A biofilm specific morphotype appeared in the effluent during cultivation, accounting for 60–80% of the total biofilm irrespective of inoculation conditions but with similar specific activities as the original morphotype. Mass transfer of the substrate styrene and the product styrene oxide was found to be dependent on the flow rate but was not limiting the epoxidation rate. Oxygen was identified as one of the main parameters influencing the biotransformation rate. Productivity was linearly dependent on the specific membrane area and on the tube wall thickness. On average volumetric productivities of 24 g L day?1 with a maximum of 70 g L day?1 and biomass concentrations of 45 gBDW L have been achieved over long continuous process periods (≥50 days) without reactor downtimes. Biotechnol. Bioeng. 2010. 105: 705–717. © 2009 Wiley Periodicals, Inc.  相似文献   
943.
Titin is a large intrasarcomeric protein that, among its many roles in muscle, is thought to modulate the in vivo assembly of the myosin motor filament. This is achieved through the molecular template properties of its A-band region, which is composed of fibronectin type III (FnIII) and immunoglobulin (Ig) domains organized into characteristic 7-domain (D-zone) and 11-domain (C-zone) superrepeats. Currently, there is little knowledge on the structural details of this region of titin. Here we report the conformational characterization of three FnIII tandems, A77-A78, A80-A82, and A84-A86, which are components of the representative fourth C-zone superrepeat. The structure of A77-A78 has been elucidated by X-ray crystallography to 1.65 Å resolution, while low-resolution models of A80-A82 and A84-A86 have been calculated using small-angle X-ray scattering. A77-A78 adopts an extended “up-down” domain arrangement, where domains are connected by a hydrophilic three-residue linker sequence. The linker is embedded in a rich network of polar contacts at the domain interface that results in a stiff molecular conformation. The models of A80-A82 and A84-A86, which contain hydrophobic six-residue-long interdomain linkers, equally showed elongated molecular shapes, but with slightly coiled or zigzagged conformations. Small-angle X-ray scattering data further suggested that the long linkers do not result in a noticeable increase in molecular flexibility but lead to semibent domain arrangements. Our findings indicate that the structural characteristics of FnIII tandems from A-band titin contrast markedly with those of poly-Ig tandems from the elastic I-band, which exhibit domain interfaces depleted of interactions and compliant conformations. Furthermore, the analysis of sequence conservation in FnIII domains from A-band titin points to the existence of conformationally defined interfaces at specific superrepeat positions, possibly leading to a periodic and locally ordered architecture supporting the molecular scaffold properties of this region of titin.  相似文献   
944.
945.
946.
Polyomavirus JC (JCV) infects ∼60% of the general population, followed by asymptomatic urinary shedding in ∼20%. In patients with pronounced immunodeficiency, including HIV/AIDS, JCV can cause progressive multifocal leukoencephalopathy (PML), a devastating brain disease of high mortality. While JCV in the urine of healthy people has a linear noncoding control region called the archetype NCCR (at-NCCR), JCV in brain and cerebrospinal fluid (CSF) of PML patients bear rearranged NCCRs (rr-NCCRs). Although JCV NCCR rearrangements are deemed pathognomonic for PML, their role as a viral determinant is unclear. We sequenced JCV NCCRs found in CSF of eight HIV/AIDS patients newly diagnosed with PML and analyzed their effect on early and late gene expression using a bidirectional reporter vector recapitulating the circular polyomavirus early and late gene organization. The rr-NCCR sequences were highly diverse, but all increased viral early reporter gene expression in progenitor-derived astrocytes, glia-derived cells, and human kidney compared to the expression levels with the at-NCCR. The expression of simian virus 40 (SV40) large T antigen or HIV Tat expression in trans was associated with a strong increase of at-NCCR-controlled early gene expression, while rr-NCCRs were less responsive. The insertion of rr-NCCRs into the JCV genome backbone revealed higher viral replication rates for rr-NCCR compared to those of the at-NCCR JCV in human progenitor-derived astrocytes or glia cells, which was abrogated in SV40 large T-expressing COS-7 cells. We conclude that naturally occurring JCV rr-NCCR variants from PML patients confer increased early gene expression and higher replication rates compared to those of at-NCCR JCV and thereby increase cytopathology.Polyomavirus JC (JCV) infects approximately 60% of the general population, followed by asymptomatic urinary shedding in 20% of healthy individuals (20). Although JCV-associated nephropathy may occur in kidney transplant (14, 33) and HIV/AIDS patients (6, 27), the most prominent JCV disease is progressive multifocal leukoencephalopathy (PML) (44, 60). The pathology of PML was first described in 1958 as a rare complication of patients with chronic lymphocytic leukemia or Hodgkin''s lymphoma (3). Today, PML is recognized as a rare, virus-mediated demyelinating disease of the white brain matter in highly immunocompromised patients, including HIV/AIDS, transplantation, and chemotherapy patients and those exposed to immunomodulatory or depleting biologicals for the treatment of autoimmune diseases (29, 40). During the human immunodeficiency virus type 1 (HIV-1) pandemic, the incidence of PML rose significantly to rates of 1 to 8% prior to the use of highly active antiretroviral therapy (2, 5, 34). The definitive diagnosis requires brain tissue, but the detection of JCV by PCR in cerebrospinal fluid (CSF) is generally accepted for a laboratory-confirmed diagnosis in immunocompromised patients with (multi-)focal neurological deficits and corresponding radiological findings (8, 26). Due to the lack of effective antiviral therapy (13), the treatment of PML is based on improving overall immune functions. While this is difficult to achieve in cancer, chemotherapy, and transplantation, prompt antiretroviral therapy in HIV/AIDS patients has significantly improved PML survival, with increasing JCV-specific immune responses and declining intracerebral JCV replication (7, 15, 23, 35, 37). In patients diagnosed with PML after treatment with natalizumab for multiple sclerosis or inflammatory bowel disease, the removal of the monoclonal antibody by plasmapheresis has been tried to restore lymphocyte homing to, and the immune surveillance of, JCV replication sites in the central nervous system (38, 40, 52). However, the success of immune reconstitution in HIV/AIDS- and natalizumab-associated PML cases is limited by the fact that PML is typically diagnosed clinically by neurological deficits resulting from significant brain damage, where mounting antiviral immunity often may be too slow to modify the outcome. On the other hand, rapid recovery may cause immune reconstitution inflammatory syndrome with paradoxical clinical worsening and fatal outcomes (9, 16, 25, 38, 46). Although the etiologic role of JCV in PML is well documented, the pathogenesis and, in particular, the role of viral determinants is less clear. Virtually all JCV strains isolated from the brain or CSF of PML patients are characterized by highly variable genomic rearrangements of the noncoding control region (NCCR), which governs viral early and late genes in opposite directions of the circular polyomavirus DNA genome (1, 4, 31, 39, 41, 43, 49, 54, 59). In contrast, JCV detected in the urine of immunocompetent individuals show a consistent linear architecture called the archetype NCCR (at-NCCR). Thus, detecting rearranged NCCRs (rr-NCCRs) JCV in the central nervous system has been viewed as being derived from the archetype and closely linked to PML (4), but the functional consequences of rearrangements are unclear. To address the consequences of the rr-NCCR for JCV gene expression and replication, we characterized the sequences of JCV rr-NCCR from patients with PML and analyzed their effect on viral gene expression and replication with JCV at-NCCR in a bidirectional reporter assay and in recombinant JCV.  相似文献   
947.
A 35-day laboratory incubation experiment at 25°C was carried out to investigate the effects of Zn and P addition on microbial biomass C, N, and P in a Zn deficient calcareous soil, sampled at 15–40 cm depth in Central Anatolia, Turkey, amended with glucose. The underlying hypothesis was that P, but also Zn addition leads to a decrease in the microbial biomass C/N ratio. In the glucose-amended soil, the microbial biomass C/N ratio was not affected by the addition of P at day 5. At day 35 in this treatment, the significant P addition × day interaction revealed a significant decrease in the microbial biomass C/N ratio from 11.3 to 8.9. In the glucose-amended soil, Zn addition also had generally significant negative effects on microbial biomass C in comparison with the pure glucose treatment. A similar tendency was observed for microbial biomass N and consequently the microbial biomass C/N ratio remained unaffected. No evidence was found in the present incubation experiment that the microbial community suffered from Zn deficiency.  相似文献   
948.
In order to meet planetary-protection requirements, culturable bacterial spore loads are measured representatively for the total microbial contamination of spacecraft. However, the National Aeronautics and Space Administration''s (NASA''s) cotton swab protocols for spore load determination have not changed for decades. To determine whether a more efficient alternative was available, a novel swab was evaluated for recovery of different Bacillus atrophaeus spore concentrations on stainless steel and other surfaces. Two protocols for the nylon-flocked swab (NFS) were validated and compared to the present NASA standard protocol. The results indicate that the novel swab protocols recover 3- to 4-fold more (45.4% and 49.0% recovery efficiency) B. atrophaeus spores than the NASA standard method (13.2%). Moreover, the nylon-flocked-swab protocols were superior in recovery efficiency for spores of seven different Bacillus species, including Bacillus anthracis Sterne (recovery efficiency, 20%). The recovery efficiencies for B. atrophaeus spores from different surfaces showed a variation from 5.9 to 62.0%, depending on the roughness of the surface analyzed. Direct inoculation of the swab resulted in a recovery rate of about 80%, consistent with the results of scanning electron micrographs that allowed detailed comparisons of the two swab types. The results of this investigation will significantly contribute to the cleanliness control of future life detection missions and will provide significant improvement in detection of B. anthracis contamination for law enforcement and security efforts.The recent discovery of liquid water on Mars has sparked debate about the possibility of extraterrestrial life (37). Consequently, highly sensitive biosensors will be deployed onboard spacecraft like the Mars Science Laboratory (MSL), using technologies such as gas chromatographical analysis to search for the smallest traces of life (http://mars.jpl.nasa.gov/msl/mission/). Contamination of equipment by terrestrial microorganisms resulting from a lack of spacecraft cleanliness could significantly compromise the integrity of life detection missions and result in falsely positive extraterrestrial life signals. The prevention of this so-called “forward contamination” is one major goal of American and European space agencies'' planetary-protection efforts. Regular determination of a spacecraft''s bioload and the mission components throughout assembly are mandatory for detecting unacceptably high contamination that exceeds levels set by the United Nations treaty (Outer Space Treaty [11]).Modern spacecraft hardware is very susceptible to standard heat sterilization protocols, so baking the entire spacecraft, such as the Viking Lander Capsule at 111.7°C ± 1.7°C for 23 to 30 h is no longer feasible (30). Alternative cleaning and sterilization methodologies for spacecraft components prior to assembly (i.e., nonthermal plasma technologies) have been discussed (36). However, after integration, sterile hardware is exposed to a significant risk of contamination during assembly, testing, and launching operations. Because of limited access to integrated spacecraft components, the microbial cleanliness of a spacecraft and its surroundings is meticulously maintained through frequent cleaning and sterilization routines. Therefore, the regular and frequent detection of possible contaminants in the assembly environment is more important than ever.To estimate the severity of microbial contamination, the National Aeronautics and Space Administration''s (NASA''s) standard procedure focuses on aerobic, mesophilic spores (26). Briefly, surface samples are taken from spacecraft using moist cotton swabs or wipes. After an extraction procedure, the samples are subjected to a short heat shock (15 min; 80°C) to kill vegetative cells and then pour plated in Trypticase soy agar (TSA) for the enumeration of CFU. This protocol was originally developed for the Viking mission more than 3 decades ago (30) and has remained, for the most part, unchanged.Recent studies have shown that cotton swabs have acceptable recovery efficiencies for Bacillus spores (41.7%) (32) but, due to their organic nature, may raise residue problems on surfaces. Furthermore, their comparatively high DNA content could lead to false positives or inhibition should NASA one day incorporate molecular technologies into their microbial-detection protocols (7).Based on these observations, researchers are beginning to move away from cotton in favor of alternative swabs made from rayon or macrofoam (6, 18). A recent study reported high recovery efficiencies for various vegetative cells from stainless steel surfaces by applying a novel swab with a bulb-shaped head flocked with nylon fibers (12). Patented in 2004, this design facilitates the release of particulates and microbes, resulting in a significantly higher detection rate. The broad applicability of these nylon-flocked swabs (NFS) has been demonstrated by their use in various clinical studies isolating pathogens from medical environments (1, 10, 20).General studies on surface-sampling tools have clearly shown that the swab material and the extraction method are the dominant factors in spore recovery efficiencies (32). Additionally, the properties of the surface to be sampled affect sample recovery (8). For planetary-protection applications, the broad variety of novel materials used in spacecraft construction must be considered. The Mars Exploration Rover mission craft, for example, was composed of at least five kinds of surface materials (http://marsrovers.jpl.nasa.gov/overview). While the cruise stage was constructed primarily of aluminum and the aeroshell consisted of aluminum honeycomb structures, the lander itself was made of titanium and graphite composite (carbon fiber-reinforced plastic [CFRP]). The airbag and the parachutes were made of Vectran and polyester/nylon fabrics. These different materials are quite challenging for sampling tools. Accurate sampling of materials with various surface textures will require planetary-protection programs to introduce novel swab materials.To our knowledge, no investigations have been performed to compare the recovery of spores from different spacecraft surfaces. Previous studies have compared cotton and synthetic sampling materials, but only on stainless steel surfaces (19), and no studies have compared sampling methods on actual spacecraft materials (7).Recently published protocols for spore detection have been based on one specific Bacillus species and/or on one type of surface. Unfortunately, these protocols provide no insight into the effects of varying these factors (4-6, 8, 9, 14, 18), as requested by USP (United States Pharmacopeia) 1223 for validation of alternative microbial methods (3). Some of the aforementioned studies were conducted in response to B. anthracis terrorism incidents in 2001 and used B. atrophaeus as a surrogate. Consequently, information about the actual sampling efficiency of B. anthracis spores is quite limited and may vary significantly from the B. atrophaeus data.In this comprehensive study, we evaluated the novel nylon-flocked swab and a corresponding protocol to recover Bacillus spores from five different spacecraft-related surfaces. It should be noted that although stainless steel served as the standard test surface, it is not a predominant material in spacecraft; however, since the majority of previous (sampling) studies were performed on stainless steel, it represents a universally recognized carrier and also serves as a conservative proxy for the average roughness of the materials used in space science.Our nylon-flocked-swab protocol was validated with respect to accuracy, precision, limit of detection, linearity, and robustness (3). Moreover, its specificity was determined by applying spores of seven different Bacillus species, including the avirulent, attenuated strain Bacillus anthracis Sterne, and by comparing the resulting recovery efficiencies. The results in this communication will significantly contribute to planetary-protection protocols and could also be of high interest for public health issues.  相似文献   
949.
A new approach for the detection of virulence factors of Staphylococcus aureus and Staphylococcus epidermidis using an electrical protein array chip technology is presented. The procedure is based on an enzyme-linked sandwich immunoassay, which includes recognition and binding of virulence factors by specific capture and detection antibodies. Detection of antibody-bound virulence factors is achieved by measuring the electrical current generated by redox recycling of an enzymatically released substance. The current (measured in nanoampere) corresponds to the amount of the target molecule in the analyzed sample. The electrical protein chip allows for a fast detection of Staphylococcus enterotoxin B (SEB) of S. aureus and immunodominant antigen A homologue (IsaA homologue) of S. epidermidis in different liquid matrices. The S. aureus SEB virulence factor could be detected in minimal medium, milk, and urine in a concentration of 1 ng/ml within less than 23 min. Furthermore, a simultaneous detection of SEB of S. aureus and IsaA homologue of S. epidermidis in a single assay could be demonstrated.  相似文献   
950.
Despite extensive investigations of Cbl‐interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post‐synaptic compartment of striatal neurons in which it co‐clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号