首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   65篇
  国内免费   1篇
  2023年   13篇
  2022年   32篇
  2021年   56篇
  2020年   23篇
  2019年   22篇
  2018年   41篇
  2017年   42篇
  2016年   41篇
  2015年   77篇
  2014年   70篇
  2013年   96篇
  2012年   105篇
  2011年   96篇
  2010年   54篇
  2009年   48篇
  2008年   57篇
  2007年   52篇
  2006年   45篇
  2005年   33篇
  2004年   31篇
  2003年   30篇
  2002年   30篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有1120条查询结果,搜索用时 15 毫秒
891.
Immunoglobulin (Ig) domains are the most prevalent protein domain structure and share a highly conserved folding pattern; however, this structural family of proteins is also the most diverse in terms of biological roles and tissue expression. Ig domains vary significantly in amino acid sequence but share a highly conserved tryptophan in the hydrophobic core of this beta‐stranded protein. Palladin is an actin binding and bundling protein that has five Ig domains and plays an important role in normal cell adhesion and motility. Mutation of the core tryptophan in one Ig domain of palladin has been identified in a pancreatic cancer cell line, suggesting a crucial role for this sole tryptophan in palladin Ig domain structure, stability, and function. We found that actin binding and bundling was not completely abolished with removal of this tryptophan despite a partially unfolded structure and significantly reduced stability of the mutant Ig domain as shown by circular dichroism investigations. In addition, this mutant palladin domain displays a tryptophan‐like fluorescence attributed to an anomalous tyrosine emission at 341 nm. Our results indicate that this emission originates from a tyrosinate that may be formed in the excited ground state by proton transfer to a nearby aspartic acid residue. Furthermore, this study emphasizes the importance of tryptophan in protein structural stability and illustrates how tyrosinate emission contributions may be overlooked during the interpretation of the fluorescence properties of proteins.  相似文献   
892.
Journal of Plant Biochemistry and Biotechnology - Powdery mildew is a serious fungal disease of wheat caused by Blumeria graminis f. sp. tritici. Chromosome 5U of Aegilops triuncialis carrying...  相似文献   
893.
894.
Plasmonics - Bi-functional nanocomposite thin films of fullerene C60 and C70 containing Au NPs were synthesized using thermal co-evaporation method. Different atomic concentrations of Au metal...  相似文献   
895.
International Journal of Peptide Research and Therapeutics - Tuberculosis has become a cause of worldwide concern; emergence of resistance in various mycobacterial strains has led to an urgent...  相似文献   
896.
ABSTRACT

The mechanism by which interferon-gamma (IFN-γ) downregulates trophoblast invasion needs further investigation. Treatment of HTR-8/SVneo cells with IFN-γ led to a decrease in their invasion concomitant with an increased expression of BST2. Silencing of BST2 by siRNA showed a significant increase in their invasion and spreading after treatment with IFN-γ as well as downregulated expression of E-cadherin. Further, STAT1 silencing inhibited the IFN-γ-dependent increase in the expression of BST2 and E-cadherin. Treatment of HTR-8/SVneo cells with IFN-γ led to the activation of AKT, and its inhibition with PI3K inhibitor abrogated IFN-γ-mediated decrease in invasion/spreading and downregulated BST2 and E-cadherin expression. Collectively, IFN-γ decreases the invasion of HTR-8/SVneo cells by STAT1 and AKT activation via increased expression of BST2 and E-cadherin.  相似文献   
897.
Rotavirus (RV) being the major diarrhoegenic virus causes around 527000 children death (<5years age) worldwide. In cellular environment, viruses constantly adapt and modulate to survive and replicate while the host cell also responds to combat the situation and this results in the differential regulation of cellular proteins. To identify the virus induced differential expression of proteins, 2D-DIGE (Two-dimensional Difference Gel Electrophoresis) based proteomics was used. For this, HT-29 cells were infected with RV strain SA11 for 0 hours, 3 hours and 9 hours post infection (hpi), differentially expressed spots were excised from the gel and identified using MALDI-TOF/TOF mass spectrometry. 2D-DIGE based proteomics study identified 32 differentially modulated proteins, of which 22 were unique. Some of these were validated in HT-29 cell line and in BALB/c mice model. One of the modulated cellular proteins, calmodulin (CaM) was found to directly interact with RV protein VP6 in the presence of Ca2+. Ca2+-CaM/VP6 interaction positively regulates RV propagation since both CaM inhibitor (W-7) and Ca2+ chelator (BAPTA-AM) resulted in decreased viral titers. This study not only identifies differentially modulated cellular proteins upon infection with rotavirus in 2D-DIGE but also confirmed positive engagement of cellular Ca2+/CaM during viral pathogenesis.  相似文献   
898.
Chlamydia are Gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI) Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV). We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect.  相似文献   
899.
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell growth that is often misregulated in cancer. Several recent studies highlight the unique structural mechanisms involved in its regulation. Some elucidate the important role that the juxtamembrane segment and the transmembrane helix play in stabilizing the activating asymmetric kinase dimer, and suggest that its activation mechanism is likely to be conserved among the other human EGFR-related receptors. Other studies provide new explanations for two long observed, but poorly understood phenomena, the apparent heterogeneity in ligand binding and the formation of ligand-independent dimers. New insights into the allosteric mechanisms utilized by intracellular regulators of EGFR provide hope that allosteric sites could be used as targets for drug development.  相似文献   
900.
S6K1 (p70 S6 kinase-1) is thought to play a critical role in the development of obesity and insulin resistance, thus making it an attractive target in developing medicines for the treatment of these disorders. We describe a novel thiophene urea class of S6K inhibitors. The lead matter for the development of these inhibitors came from mining the literature for reports of weak off-target S6K activity. These optimized inhibitors exhibit good potency and excellent selectivity for S6K over a panel of 43 kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号