首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1858篇
  免费   120篇
  国内免费   1篇
  1979篇
  2023年   15篇
  2022年   43篇
  2021年   67篇
  2020年   26篇
  2019年   28篇
  2018年   51篇
  2017年   47篇
  2016年   51篇
  2015年   104篇
  2014年   98篇
  2013年   131篇
  2012年   159篇
  2011年   147篇
  2010年   82篇
  2009年   68篇
  2008年   85篇
  2007年   81篇
  2006年   65篇
  2005年   64篇
  2004年   61篇
  2003年   56篇
  2002年   49篇
  2001年   22篇
  2000年   21篇
  1999年   13篇
  1998年   7篇
  1997年   10篇
  1996年   8篇
  1995年   14篇
  1994年   7篇
  1992年   15篇
  1991年   18篇
  1990年   14篇
  1989年   18篇
  1988年   13篇
  1987年   24篇
  1986年   25篇
  1985年   12篇
  1984年   10篇
  1982年   8篇
  1981年   7篇
  1980年   7篇
  1979年   13篇
  1978年   14篇
  1977年   11篇
  1976年   7篇
  1974年   11篇
  1973年   12篇
  1972年   6篇
  1962年   5篇
排序方式: 共有1979条查询结果,搜索用时 0 毫秒
991.
Structural optimization of the previously identified 4-(adamantan-1-yl)-2-quinolinecarbohydrazide (AQCH, MIC=6.25 microg/mL, 99% inhibition, Mycobacterium tuberculosis H37Rv) has led to two series of 4-(adamantan-1-yl)-2-substituted quinolines (Series 1-2). All new derivatives were evaluated in vitro for antimycobacterial activities against drug-sensitive M. tuberculosis H37Rv strain. Several 4-adamantan-1-yl-quinoline-2-carboxylic acid N'-alkylhydrazides (Series 1) described herein showed promising inhibitory activity. In particular, analogs 7, 9, 20, and 21 displayed MIC of 3.125 microg/mL. Further investigation of AQCH by its reaction with various aliphatic, aromatic, and heteroaromatic aldehydes led to the synthesis of 4-adamantan-1-yl-quinoline-2-carboxylic acid alkylidene hydrazides (Series 2). Analogs 42-44 and 48 have produced promising antimycobacterial activities (99% inhibition) at 3.125 microg/mL against drug-sensitive M. tuberculosis H37Rv strain. The most potent analog 35 of the series produced 99% inhibition at 1.00 microg/mL against drug-sensitive strain, and MIC of 3.125 microg/mL against isoniazid-resistant TB strain. To understand the relationship between structure and activity, a 3D-QSAR analysis has been carried out by three methods-comparative molecular field analysis (CoMFA), CoMFA with inclusion of a hydropathy field (HINT), and comparative molecular similarity indices analysis (CoMSIA). Several statistically significant CoMFA, CoMFA with HINT, and CoMSIA models were generated. Prediction of the activity of a test set of molecules was the best for the CoMFA model generated with database alignment. Based on the CoMFA contours, we have tried to explain the structure-activity relationships of the compounds reported herein.  相似文献   
992.
The effects of the backbone and side chain on the molecular environments in the chiral cavities of three commercially important polysaccharide-based chiral sorbents--cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), amylose tris(3,5-dimethylphenylcarbamate) (ADMPC), and amylose tris[(S)-alpha-methylbenzylcarbamate] (ASMBC)--are studied by attenuated total reflection infrared spectroscopy (ATR-IR), X-ray diffraction (XRD), 13C cross-polarization/magic-angle spinning (CP/MAS) and MAS solid-state NMR, and density functional theory (DFT) modeling. These sorbents are used widely in preparative-scale chiral separations. ATR-IR is used to determine how the H-bonding states of the C=O and NH groups of the polymer depend on the backbone and side chain. The changes in the polymer crystallinity are characterized with XRD. The changes in the polymer helicity and molecular mobility for polymer-coated silica beads (commercially called Chiralcel OD, Chirapak AD, and Chiralpak AS) are probed with 13C CP/MAS and MAS solid-state NMR. The IR wavenumbers and the NMR chemical shifts for the polymer backbone monomers and dimers and the side chains are predicted at the DFT/B3LYP/6-311+g(d,p) level of theory. It is concluded that the molecular environments of the C=O, NH, and phenyl groups show significant differences in intramolecular and intermolecular interactions and in the nanostructures of the chiral cavities of these biopolymers. These results have implications for understanding how the molecular environments of chiral cavities of these polymers affect their molecular recognition mechanisms.  相似文献   
993.
Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy.  相似文献   
994.
Polyaniline/carbon nanotubes composite (PANI‐CNT) electrochemically deposited onto indium‐tin‐oxide (ITO) coated glass plate has been utilized for Neisseria gonorrhoeae detection by immobilizing 5′‐amino‐labeled Neisseria gonorrhoeae probe (aDNA) using glutaraldehyde as a cross‐linker. PANI‐CNT/ITO and aDNA‐Glu‐PANI‐CNT/ITO electrodes have been characterized using scanning electron microscopy (SEM), Fourier Transform Infrared (FT‐IR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This bioelectrode can be used to detect N. gonorrhoeae using methylene blue (MB) as redox indicator with response time of 60 s and stability of about 75 days when stored under refrigerated conditions. DPV studies reveal that this bioelectrode can detect complementary DNA concentration from 1 × 10?6 M to 1 × 10?17 M with detection limit of 1.2 × 10?17 M. Further, this bioelectrode (aDNA‐Glu‐PANI‐CNT/ITO) exhibits specificity toward N. gonorrhoeae species and shows negative response with non‐Neisseria gonorrhoeae Neisseria species (NgNS) and other gram negative bacteria (GNB). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
Chronic exposure of cells to cognate agonists has been established to cause homologous desensitization of G protein-coupled receptors. In this work, we show that exposure of adult rat eardiomyoeytes to isoproterenol (ISO) for 24 h led to the desensitization of -adrenoceptor (-AR) coupled adenylyl cyclase (AC) activity, which was associated with an increased inhibition of AC by M2-muscarinic receptor (MR) agonist, carbachol (Cch), and a decreased inhibition of AC by A1-adenosine receptor (AdR) agonist, N6-phenylisopropyladenosine (R-PIA). Chronic exposure of eells to Cch caused the desensitization of M2-MR-coupled AC, decreased the inhibitory action of R-PIA on AC and increased ISO-stimulated AC, while chronic exposure to R-PIA caused the desensitization of A1-AdR-coupled AC and modestly increased ISO-stimulated AC without any significant effect on Cch inhibition of the enzyme. Thus, chronic exposure ol cardiomyocytes revealed for the first time a more complex and differential nature of cross-talk among the three major G-coupled receptors in modulating AC.  相似文献   
996.
Plant and Soil - In Ontario, Canada, acreage of red clover (Trifolium pratense L.) intercropped with winter wheat (Triticum aestivum L. em. Thell) has declined, despite well-documented soil and...  相似文献   
997.

Background

Relatively small, reproductively isolated populations with reduced genetic diversity may have advantages for genomewide association mapping in disease genetics. The Ashkenazi Jewish population represents a unique population for study based on its recent (< 1,000 year) history of a limited number of founders, population bottlenecks and tradition of marriage within the community. We genotyped more than 1,300 Ashkenazi Jewish healthy volunteers from the Hebrew University Genetic Resource with the Illumina HumanOmni1-Quad platform. Comparison of the genotyping data with that of neighboring European and Asian populations enabled the Ashkenazi Jewish-specific component of the variance to be characterized with respect to disease-relevant alleles and pathways.

Results

Using clustering, principal components, and pairwise genetic distance as converging approaches, we identified an Ashkenazi Jewish-specific genetic signature that differentiated these subjects from both European and Middle Eastern samples. Most notably, gene ontology analysis of the Ashkenazi Jewish genetic signature revealed an enrichment of genes functioning in transepithelial chloride transport, such as CFTR, and in equilibrioception, potentially shedding light on cystic fibrosis, Usher syndrome and other diseases over-represented in the Ashkenazi Jewish population. Results also impact risk profiles for autoimmune and metabolic disorders in this population. Finally, residual intra-Ashkenazi population structure was minimal, primarily determined by class 1 MHC alleles, and not related to host country of origin.

Conclusions

The Ashkenazi Jewish population is of potential utility in disease-mapping studies due to its relative homogeneity and distinct genomic signature. Results suggest that Ashkenazi-associated disease genes may be components of population-specific genomic differences in key functional pathways.  相似文献   
998.
The extracellular polymeric substance produced by many human pathogens during biofilm formation often contains extracellular DNA (eDNA). Strands of bacterial eDNA within the biofilm matrix can occur in a lattice‐like network wherein a member of the DNABII family of DNA‐binding proteins is positioned at the vertex of each crossed strand. To date, treatment of all biofilms tested with antibodies directed against one DNABII protein, Integration Host Factor (IHF), results in significant disruption. Here, using non‐typeable Haemophilus influenzae as a model organism, we report that this effect was rapid, IHF‐specific and mediated by binding of transiently dissociated IHF by anti‐IHF even when physically separated from the biofilm by a nucleopore membrane. Further, biofilm disruption fostered killing of resident bacteria by previously ineffective antibiotics. We propose the mechanism of action to be the sequestration of IHF upon dissociation from the biofilm eDNA, forcing an equilibrium shift and ultimately, collapse of the biofilm. Further, antibodies against a peptide positioned at the DNA‐binding tips of IHF were as effective as antibodies directed against the native protein. As incorporating eDNA and associated DNABII proteins is a common strategy for biofilms formed by multiple human pathogens, this novel therapeutic approach is likely to have broad utility.  相似文献   
999.
RNA Interference: Biology, Mechanism, and Applications   总被引:16,自引:0,他引:16       下载免费PDF全文
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.  相似文献   
1000.
The circumsporozoite protein (CSP) is the major surface protein of the sporozoite stage of malaria parasites and has multiple functions as the parasite develops and then migrates from the mosquito midgut to the mammalian liver. The overall structure of CSP is conserved among Plasmodium species, consisting of a species-specific central tandem repeat region flanked by two conserved domains: the NH2-terminus and the thrombospondin repeat (TSR) at the COOH-terminus. Although the central repeat region is an immunodominant B-cell epitope and the basis of the only candidate malaria vaccine in Phase III clinical trials, little is known about its functional role(s). We used the rodent malaria model Plasmodium berghei to investigate the role of the CSP tandem repeat region during sporozoite development. Here we describe two mutant parasite lines, one lacking the tandem repeat region (ΔRep) and the other lacking the NH2-terminus as well as the repeat region (ΔNΔRep). We show that in both mutant lines oocyst formation is unaffected but sporozoite development is defective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号